Vol. 29/2020 Issue 59
okładka czasopisma Child Neurology
powiększenie okładki
Journal Info

CHILD NEUROLOGY

Journal of the Polish Society of Child Neurologists

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Semiannual


Powrót

Przyszłość terapii stwardnienia rozsianego u dzieci i młodzieży


Future of multiple sclerosis therapy in children and adolescents




Klinika Neurologii, Instytut Centrum Zdrowia Matki Polki w Łodzi

https://doi.org/10.20966/chn.2015.49.352
Neurol Dziec 2015; 24, 49: 39-46
Full text PDF Przyszłość terapii stwardnienia rozsianego u dzieci i młodzieży



STRESZCZENIE
Stwardnienie rozsiane (łac. sclerosis multiplex – SM) jest przewlekłą demielinizacyjną chorobą ośrodkowego układu nerwowego (OUN), u której podstaw leżą najprawdopodobniej złożone zaburzenia odpowiedzi immunologicznej oraz procesy neurodegeneracyjne. Intensywne badania nad terapią w SM umożliwiły w ostatnich latach wprowadzenie na rynek szeregu leków o zróżnicowanym mechanizmie działania, odmiennej skuteczności klinicznej i profilu działań niepożądanych, a także różnej drodze i schemacie podawania pacjentom. Wczesne rozpoczęcie terapii immunomodulacyjnej oraz możliwość jej dostosowania do przebiegu choroby skutkują, u dużej grupy pacjentów, dobrą kontrolą rzutów, a nawet spowolnieniem progresji niepełnosprawności. Pozwoliło to na wprowadzenie pojęcia „brak oznak aktywności choroby” (ang. no evidence of disease activity – NEDA) do standardu oceny skuteczności leczenia w SM. Niestety, sytuacja terapeutyczna u pacjentów z SM o wczesnym początku jest znacznie trudniejsza. W dalszym ciągu brak jest danych na temat leczenia immunomodulacyjnego uzyskanych w wieloośrodkowych badaniach klinicznych przeprowadzonych w populacjach pediatrycznych. W Polsce dodatkowym ograniczeniem są ramy programów refundacyjnych, które nie przewidują żadnej opcji terapeutycznej dla pediatrycznych pacjentów z SM niereagujących na leki pierwszego rzutu (interferony i octan glatirameru). Dlatego duże nadzieje wiązane są z wynikami prowadzonych obecnie u dzieci i młodzieży z SM badań III fazy leków immunomodulacyjnych o dużej skuteczności działania wykazanej u osób dorosłych i dogodnej – doustnej formie podawania.

Słowa kluczowe: stwardnienie rozsiane, leczenie immunomodulacyjne, nowe leki w stwardnieniu rozsianym


ABSTRACT
Multiple sclerosis (MS) is a chronic demyelinative disease of the central nervous system (CNS) caused, most probably, by complex immune disturbances and neurodegenerative processes. Recent intensive research on the therapy of MS enabled the registration of several pharmaceuticals characterized by various mechanisms of action, different clinical effectiveness and side-effects profile as well as different ways and schemes of administration. Early introduction of the immunomodulatory treatment and the possibility to adjust the therapy to the disease course allow for an efficient control of relapses and even the inhibition of disability progression in a significant group of patients. Accordingly, the term of No Evidence of Disease Activity (NEDA) was included in the standards of assessment of MS therapy effectiveness. Unfortunately, the situation in early onset MS is less positive. There are still no data on the immunomodulatory treatment obtained in multicenter clinical trials performed in pediatric populations. In Poland additional constrictions arise from the governmental therapy programs lacking any options for the pediatric MS patients with no response to first line treatments (interferons or galtiramer acetate). Therefore, there are high expectations regarding the results of currently ongoing in pediatric MS patients Phase 3 clinical trials of immunomodulatory therapies, characterized by significant effectiveness in adult population and convenient, oral way of administration.

Key words: Multiple sclerosis, immunomodulatory therapy, new drugs in MS


PIŚMIENNICTWO
[1] 
Deryck O., Ketelaer P., Dubois B.: Clinical characteristics and long term prognosis in early onset multiple sclerosis. J Neurol 2006; 253: 720-723.
[2] 
Hauser S. L., Oksenberg J. R.: The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006; 52: 61-76.
[3] 
Koch-Henriksen N., Sørensen P. S.: The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol 2010; 9: 520-532.
[4] 
Ciccarelli O., Barkhof F., Bodini B., et al.: Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol 2014; 13: 807-822.
[5] 
Raine C. S.: The Norton Lecture: A review of the oligodendrocyte in the multiple sclerosis lesion. J Neuroimmunol 1997; 77: 135-152.
[6] 
Lucchinetti C., Brück W., Parisi J., et al.: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47: 707-717.
[7] 
Bramow S., Frischer J. M., Lassmann H., et al.: Demyelination versus remyelination in progressive multiple sclerosis. Brain 2010; 133: 2983-2998.
[8] 
Stasiolek M., Bayas A., Kruse N., et al.: Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 2006; 129: 1293-1305.
[9] 
Stasiolek M., Linker R. A., Hayardeny L., et al.: Immune parameters of patients treated with laquinimod, a novel oral therapy for the treatment of multiple sclerosis: results from a double-blind placebo-controlled study. Immun Inflamm Dis 2015; 3: 45-55.
[10] 
Lino A. C., Dörner T., Bar-Or A., et al.: Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev 2016; 269: 130-144.
[11] 
Matysiak M., Stasiołek M., Orłowski W., et al.: Stem cells ameliorate EAE via an indoleamine 2,3-dioxygenase (IDO) mechanism. J Neuroimmunol 2008; 193: 12-23.
[12] 
Stasiolek M.: The role of selected immunoregulatory cell populations in autoimmune demyelination. Neuro Endocrinol Lett 2011; 32: 25-33.
[13] 
Stangel M., Penner I. K., Kallmann B. A., et al.: Towards the implementation of ‚no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model. Ther Adv Neurol Disord 2015; 8: 3-13.
[14] 
Chitnis T., Glanz B., Jaffin S., et al.: Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Mult Scler 2009; 15: 627-631.
[15] 
Gorman M. P., Healy B. C., Polgar-Turcsanyi M., Chitnis T.: Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol. 2009 Jan; 66(1): 54-59.
[16] 
Boiko A., Vorobeychik G., Paty D., et al.: Early onset multiple sclerosis: a longitudinal study. Neurology 2002; 59: 1006-1010.
[17] 
Banwell B., Bar-Or A., Cheung R., et al.: Abnormal T-cell reactivities in childhood inflammatory demyelinating disease and type 1 diabetes. Ann Neurol 2008; 63: 98-111.
[18] 
Benson L. A., Healy B. C., Gorman M. P., et al.: Elevated relapse rates in pediatric compared to adult MS persist for at least 6 years. Mult Scler Relat Disord 2014; 3: 186-193.
[19] 
Pfeifenbring S., Bunyan R. F., Metz I., et al.: Extensive acute axonal damage in pediatric multiple sclerosis lesions. Ann Neurol 2015; 77: 655-667.
[20] 
Harding K. E., Liang K., Cossburn M. D., et al.: Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 2013; 84: 141-147.
[21] 
Suppiej A., Cainelli E.: Cognitive dysfunction in pediatric multiple sclerosis. Neuropsychiatr Dis Treat 2014; 10: 1385-1392.
[22] 
La Mantia L., Vacchi L., Di Pietrantonj C., et al.: Interferon beta for secondary progressive multiple sclerosis. Cochrane Database Syst Rev 2012; 1: CD005181. doi: 10.1002/14651858.CD005181.pub3.
[23] 
Kuhle J., Hardmeier M., Disanto G., et al.: A 10-year follow-up of the European multicenter trial of interferon β-1b in secondary-progressive multiple sclerosis. Mult Scler 2015; pii: 1352458515594440.
[24] 
Kieseier B. C.: The mechanism of action of interferon-β in relapsing multiple sclerosis. CNS Drugs 2011; 25: 491-502.
[25] 
Johnston J., So T.Y.: First-line disease-modifying therapies in paediatric multiple sclerosis: a comprehensive overview. Drugs 2012; 72: 1195-1211.
[26] 
Pepinsky R. B., LePage D. J., Gill A., et al.: Improved pharmacokinetic properties of a polyethylene glycol-modified form of interferon-beta-1a with preserved in vitro bioactivity. J Pharmacol Exp Ther 2001; 297: 1059-1066.
[27] 
Arnold D. L., Calabresi P. A., Kieseier B. C., et al.: Effect of peginterferon beta-1a on MRI measures and achieving no evidence of disease activity: results from a randomized controlled trial in relapsing-remitting multiple sclerosis. BMC Neurol 2014; 14: 240.
[28] 
Baker D. P., Pepinsky R. B., Brickelmaier M., et al.: PEGylated interferon beta-1a: meeting an unmet medical need in the treatment of relapsing multiple sclerosis. J Interferon Cytokine Res 2010; 30: 777-785.
[29] 
Ziemssen T., Schrempf W.: Glatiramer acetate: mechanisms of action in multiple sclerosis. Int Rev Neurobiol 2007; 79: 537-570.
[30] 
La Mantia L., Di Pietrantonj C., Rovaris M., et al.: Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2014; 7: CD009333. doi: 10.1002/14651858.CD009333.pub2.
[31] 
Farrell R., Kapoor R., Leary S., et al.: Neutralizing anti-interferon beta antibodies are associated with reduced side effects and delayed impact on efficacy of Interferon-beta. Mult Scler 2008; 14: 212-218.
[32] 
Khan O., Rieckmann P., Boyko A., et al.: Three times weekly glatiramer acetate in relapsing-remitting multiple sclerosis. Ann Neurol 2013; 73: 705-713.
[33] 
Caporro M., Disanto G., Gobbi C., et al.: Two decades of subcutaneous glatiramer acetate injection: current role of the standard dose, and new high-dose low-frequency glatiramer acetate in relapsing-remitting multiple sclerosis treatment. Patient Prefer Adherence 2014; 8: 1123-1134.
[34] 
Archelos J. J., Previtali S. C., Hartung H. P.: The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci 1999; 22: 30-38.
[35] 
Polman C. H., O’Connor P. W., Havrdova E., et al.: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 2006; 354: 899-910.
[36] 
Rudick R. A., Stuart W. H., Calabresi P. A., et al.: Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med 2006; 354: 911-923.
[37] 
Oturai A. B., Koch-Henriksen N., Petersen T., et al.: Efficacy of natalizumab in multiple sclerosis patients with high disease activity: a Danish nationwide study. Eur J Neurol 2009; 16: 420-423.
[38] 
Putzki N., Yaldizli O., Mäurer M., et al.: Efficacy of natalizumab in second line therapy of relapsing-remitting multiple sclerosis: results from a multi-center study in German speaking countries. Eur J Neurol 2010; 17: 31-37.
[39] 
McGuigan C., Craner M., Guadagno J., et al.: Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry 2015; pii: jnnp-2015-311100. doi: 10.1136/jnnp-2015-311100.
[40] 
Kornek B., Aboul-Enein F., Rostasy K., et al.: Natalizumab therapy for highly active pediatric multiple sclerosis. JAMA Neurol 2013; 70: 469-475.
[41] 
Talab R., Talabova M., Klzo L.: Natalizumab in the treatment of pediatric multiple sclerosis. Neuro Endocrinol Lett 2012; 33: 579-589.
[42] 
Hyams J. S., Wilson D. C., Thomas A., et al.: Natalizumab therapy for moderate to severe Crohn disease in adolescents. J Pediatr Gastroenterol Nutr 2007; 44: 185-191.
[43] 
Ruck T., Bittner S., Wiendl H., et al.: Alemtuzumab in Multiple Sclerosis: Mechanism of Action and Beyond. Int J Mol Sci 2015; 16: 16414-16439.
[44] 
Hauser S. L., Waubant E., Arnold D. L., et al.: B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358: 676-688.
[45] 
He D., Guo R., Zhang F., et al.: Rituximab for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev 2013; 12: CD009130. doi: 10.1002/14651858.CD009130.pub3.
[46] 
Radick L., Mehr S. R.: The Latest Innovations in the Drug Pipeline for Multiple Sclerosis. Am Health Drug Benefits 2015; 8: 448-453.
[47] 
Salzer J., Lycke J., Wickström R., et al.: Rituximab in paediatric onset multiple sclerosis: a case series. J Neurol 2015 Nov 24 (e-pub).
[48] 
Chun J., Hartung H. P.: Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol 2010; 33: 91-101.
[49] 
Brinkmann V., Billich A., Baumruker T., et al.: Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 2010; 9: 883-897.
[50] 
Kappos L., Radue E. W., O’Connor P., et al.: A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362: 387-401.
[51] 
Cohen J. A., Barkhof F., Comi G., et al.: Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362: 402-415.
[52] 
Gajofatto A., Turatti M., Monaco S., et al.: Clinical efficacy, safety, and tolerability of fingolimod for the treatment of relapsing-remitting multiple sclerosis. Drug Healthc Patient Saf 2015; 7: 157-167.
[53] 
Chan A., de Seze J., Comabella M.: Teriflunomide in Patients with Relapsing-Remitting Forms of Multiple Sclerosis. CNS Drugs 2016; 30: 41-51.
[54] 
Merrill J. E., Hanak S., Pu S. F., et al.: Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Neurol 2009; 256: 89-103.
[55] 
Vermersch P., Czlonkowska A., Grimaldi L. M., et al.: Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Mult Scler 2014; 20: 705-716.
[56] 
Nicholas J. A., Boster A. L., Imitola J., et al.: Design of oral agents for the management of multiple sclerosis: benefit and risk assessment for dimethyl fumarate. Drug Des Devel Ther 2014; 8: 897-908.
[57] 
Bomprezzi R.: Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther Adv Neurol Disord 2015; 8: 20-30.
[58] 
Havrdova E., Hutchinson M., Kurukulasuriya N.C., et al.: Oral BG-12 (dimethyl fumarate) for relapsing-remitting multiple sclerosis: a review of DEFINE and CONFIRM. Evaluation of: Gold R., Kappos L., Arnold D., et al.: Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367: 1098-107; and Fox R. J., Miller D. H., Phillips J. T., et al.: Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012; 367: 1087-97. Expert Opin Pharmacother 2013; 14: 2145-2156.
Powrót
 

Most downloaded
Semiologiczna i psychiatryczna charakterystyka dzieci z psychogennymi napadami rzekomopadaczkowymi
Neurol Dziec 2018; 27, 55: 11-14
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17

Article tools
Export Citation
Format:

Scholar Google
Articles by:Stasiołek M
Articles by:Połatyńska K

PubMed
Articles by:Stasiołek M
Articles by:Połatyńska K


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych