[1]
Lefebvre S., Burglen L., Reboullet S., et al.: Identification and
characterization of a spinal muscular atrophy-determining gene. Cell,
1995; 80: 155-165.
[2]
Munsat T.L., Davies K.E.: International SMA consortium meeting. (26-28
June 1992, Bonn, Germany). Neuromuscul Disord, 1992; 2: 423-428.
[3]
MacLeod M.J., Taylor J.E., Lunt P.W., et al.: Prenatal onset spinal
muscular atrophy. Eur J Paediatr Neurol, 1999; 3: 65-72.
[4]
Brahe C., Servidei S., Zappata S., et al.: Genetic homogeneity between
childhood-onset and adult-onset autosomal recessive spinal muscular
atrophy. Lancet, 1995; 346: 741-742.
[5]
Farrar M.A., Park S.B., Vucic S., et al.: Emerging therapies and challenges
in spinal muscular atrophy. Ann Neurol, 2017; 81: 355-368.
[6]
Jedrzejowska M., Milewski M., Zimowski J., et al.: Phenotype modifiers
of spinal muscular atrophy: the number of SMN2 gene copies, deletion in
the NAIP gene and probably gender influence the course of the disease.
Acta Biochim Pol, 2009; 56: 103-108.
[7]
Sugarman E.A., Nagan N., Zhu H., et al.: Pan-ethnic carrier screening
and prenatal diagnosis for spinal muscular atrophy: clinical laboratory
analysis of >72,400 specimens. Eur J Hum Genet, 2012; 20: 27-32.
[8]
Verhaart I.E.C., Robertson A., Leary R., et al.: A multi-source approach
to determine SMA incidence and research ready population. J Neurol,
2017; 264: 1465-1473.
[9]
Jedrzejowska M., Milewski M., Zimowski J., et al.: Incidence of
spinal muscular atrophy in Poland--more frequent than predicted?
Neuroepidemiology, 2010; 34: 152-7.
[10]
Finkel R.S., McDermott M.P., Kaufmann P., et al.: Observational study
of spinal muscular atrophy type I and implications for clinical trials.
Neurology, 2014; 83: 810-817.
[11]
Melki J., Sheth P., Abdelhak S., et al.: Mapping of acute (type I) spinal
muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular
Atrophy Investigators. Lancet, 1990; 336: 271-273.
[12]
Cobben J.M., Lemmink H.H., Snoeck I., et al.: Survival in SMA type I:
a prospective analysis of 34 consecutive cases. Neuromuscul Disord,
2008; 18: 541-544.
[13]
Farrar M.A., Vucic S., Johnston H.M., et al.: Pathophysiological insights
derived by natural history and motor function of spinal muscular atrophy.
J Pediatr, 2013; 162: 155-159.
[14]
Borkowska J., Rudnik-Schoneborn S., Hausmanowa-Petrusewicz
I., et al.: Early infantile form of spinal muscular atrophy (Werdnig-
Hoffmann disease) with prolonged survival. Folia Neuropathol, 2002;
40: 19-26.
[15]
Bach J.R., Saltstein K., Sinquee D., et al.: Long-term survival in Werdnig-
Hoffmann disease. Am J Phys Med Rehabil, 2007; 86: 339-345.
[16]
Mercuri E., Finkel R., Montes J., et al.: Patterns of disease progression
in type 2 and 3 SMA: Implications for clinical trials. Neuromuscul Disord
2016: 26: 126-131.
[17]
Zerres K., Rudnik-Schoneborn S., Forrest E., et al.: A collaborative study
on the natural history of childhood and juvenile onset proximal spinal
muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci 1997;
146: 67-72.
[18]
Wang C.H., Finkel R.S., Bertini E.S., et al.: Consensus statement for
standard of care in spinal muscular atrophy. J Child Neurol 2007; 22:
1027-1049.
[19]
Finkel R.S., Sejersen T., Mercuri E., et al.: 218th ENMC International
Workshop:: Revisiting the consensus on standards of care in SMA
Naarden, The Netherlands, 19-21 February 2016. Neuromuscul Disord
2017; 27: 596-605.
[20]
Bach J.R., Goncalves M.R., Hon A., et al.: Changing trends in the
management of end-stage neuromuscular respiratory muscle failure:
recommendations of an international consensus. Am J Phys Med
Rehabil 2013; 92: 267-277.
[21]
Sansone V.A., Racca F., Ottonello G., et al.: 1st Italian SMA Family
Association Consensus Meeting: Management and recommendations
for respiratory involvement in spinal muscular atrophy (SMA) types
I-III, Rome, Italy, 30-31 January 2015. Neuromuscul Disord 2015; 25:
979-989.
[22]
Jedrzejowska M., Wiszniewski W., Zimowski J., et al.: Application
of a rapid non-invasive technique in the molecular diagnosis of spinal
muscular atrophy (SMA). Neurol Neurochir Pol 2005; 39: 89-94.
[23]
Jedrzejowska M., Gos M., Zimowski J.G., et al.: Novel point mutations
in survival motor neuron 1 gene expand the spectrum of phenotypes
observed in spinal muscular atrophy patients. Neuromuscul Disord
2014; 24: 617-623.
[24]
Farrar M.A., Johnston H.M., Grattan-Smith P., et al.: Spinal muscular
atrophy: molecular mechanisms. Curr Mol Med 2009; 9: 851-862.
[25]
Feldkotter M., Schwarzer V., Wirth R., et al.: Quantitative analyses of
SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly
reliable carrier testing and prediction of severity of spinal muscular
atrophy. Am J Hum Genet 2002; 70: 358-368.
[26]
Wirth B., Brichta L., Schrank B., et al.: Mildly affected patients with
spinal muscular atrophy are partially protected by an increased SMN2
copy number. Hum Genet, 2006; 119: 422-428.
[27]
Mailman M.D., Heinz J.W., Papp A.C., et al.: Molecular analysis of spinal
muscular atrophy and modification of the phenotype by SMN2. Genet
Med 2002; 4: 20-26.
[28]
Bernal S., Alias L., Barcelo M.J., et al.: The c.859G>C variant in the
SMN2 gene is associated with types II and III SMA and originates from
a common ancestor. J Med Genet 2010; 47: 640-642.
[29]
Hausmanowa-Petrusewicz I., Zaremba J., Borkowska J., et al.: Chronic
proximal spinal muscular atrophy of childhood and adolescence: sex
influence. J Med Genet, 1984; 21: 447-450.
[30]
Oprea G.E., Krober S., McWhorter M.L., et al.: Plastin 3 is a protective
modifier of autosomal recessive spinal muscular atrophy. Science 2008;
320: 524-527.
[31]
Zhang Z., Pinto A.M., Wan L., et al.: Dysregulation of synaptogenesis
genes antecedes motor neuron pathology in spinal muscular atrophy.
Proc Natl Acad Sci U S A, 2013; 110: 19348-19353.
[32]
Cherry J.J., Kobayashi D.T., Lynes M.M., et al.: Assays for the
identification and prioritization of drug candidates for spinal muscular
atrophy. Assay Drug Dev Technol 2014; 12: 315-341.
Correspondence:
Anna Kostera-Pruszczyk, Klinika Neurologii WUM, ul. Banacha 1a, 02-097 Warszawa, akostera@wum.edu.pl
[33]
Potaczek D.P., Garn H., Unger S.D., et al.: Antisense molecules: A new
class of drugs. J Allergy Clin Immunol 2016; 137: 1334-1346.
[34]
Sardone V., Zhou H., Muntoni F., et al.: Antisense Oligonucleotide-Based
Therapy for Neuromuscular Disease. Molecules 2017; 22(4): 10.3390/
molecules22040563
[35]
Goemans N.M., Tulinius M., J.T. van den Akker, et al.: Systemic
administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J
Med 2011; 364: 1513-1522.
[36]
Mendell J.R., Rodino-Klapac L.R., Sahenk Z., et al.: Eteplirsen for the
treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74: 637-647.
[37]
Chiriboga C.A., Swoboda K.J., Darras B.T., et al.: Results from a phase
1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular
atrophy. Neurology 2016; 86: 890-897.
[38]
Dulsat, C.,: American Academy of Neurology - 69th Annual Meeting
(April 22-28, 2017 - Boston, Massachusetts, USA). Drugs Today (Barc)
2017; 53: 309-319.
[39]
Bertini E., Dessaud E., Mercuri E., et al.: Safety and efficacy of olesoxime
in patients with type 2 or non-ambulatory type 3 spinal muscular
atrophy: a randomised, double-blind, placebo-controlled phase 2 trial.
Lancet Neurol, 2017; 16: 513-522.
[40]
Naryshkin N.A., Weetall M., Dakka A., et al.: Motor neuron disease.
SMN2 splicing modifiers improve motor function and longevity in mice
with spinal muscular atrophy. Science 2014; 345: 688-693.
[41]
Calder A.N., Androphy E.J., Hodgetts K.J.: Small Molecules in
Development for the Treatment of Spinal Muscular Atrophy. J Med Chem
2016; 59: 10067-10083.
[42]
Shefner J.M., Wolff A.A., Meng L., et al.: A randomized, placebocontrolled,
double-blind phase IIb trial evaluating the safety and efficacy
of tirasemtiv in patients with amyotrophic lateral sclerosis. Amyotroph
Lateral Scler Frontotemporal Degener, 2016; 17: 426-435.