[1]
Van Karnebeek C.D.M., Sayson B., Lee J.J.Y. et al.: Metabolic evaluation of epilepsy: a diagnostics algorithm with focus on treatable conditions. Front Neurol 2018;9: 1016: 1–12.
[2]
Van Karnebeek C.D.M., Shevell M., Zschocke J. et al.: The metabolic evaluation of the child with an intellectual development al disorder: di-agnostics algorithm for identification of treatable causes and new digital resource. Mol Genet Metab 2014; 111: 428–438.
[3]
Van Karnebeek C.D., Stockler-Ipsiroglu S.: Early identification of treat-able inborn errors of metabolism in children with intellectual disability: the treatable intellectual disability endeavor protocol in British Columbia. Paediatr Child Health 2014; 19: 469–471.
[4]
Almannai M., El-Hattab A.W.: Inborn errors of metabolism with seizures. Defects of glycine and serine metabolism and co-factor-related disor-ders. Pediatr Clin N Am 2018; 65: 279–299.
[5]
Campistol J.: Epilepsy in inborn errors of metabolism with therapeutic options. SemPedNeurol 2016; 23: 321–331.
[6]
Bahi-Buisson N., Dulac O.: Epilepsy in inborn errors of metabolism. Chap-ter 56, pp. 533–541. Handbook of Clinical Neurology. Vol III (3rd series). Pediatric Neurology Part I. Dulac O., Lassonde M., Sarnat H.B., Editors. Elsevier 2013.
[7]
Yu J.Y., Pearl P.L.: Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat 2013, Article ID 124934, 20 pages
[8]
Mastrangelo M.: Actual insights into treatable inborn errors of metabo-lism causing epilepsy. J Pediatr Neurosci 2018; 13: 13–23.
[9]
Ferreira C.R., van Karnebeek C.D.M., Vockley J. et al.: A proposed nosol-ogy of inborn errors of metabolism. Genet Med 2018; 20: 151–158.
[10]
Lee J.J.Y., Wasserman W.W., Hoffmann G.F. et al.: Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med 2018; 20:151–158.
[11]
Sharma S., Prasad A.N.: Inborn errors of metabolism and epilepsy: cur-rent understanding, diagnosis, and treatment approaches. Int J Mol Sci 2017; 18: 1384.
[12]
Pearl L.P.: Amenable treatable severe pediatric epilepsies. Sem Ped Neu-rol 2016; 23: 158–166.
[13]
Liu X., Li R., Chen S. et al.: Screening of inherited metabolic abnormali-ties in 56 children with intractable epilepsy. ExpTher Med 2016; 12: 135–140.
[14]
Wesół-Kucharska D., Rokicki D.: Drgawki pirydoksynozależne – aktualna diagnostyka i leczenie. Neur Dziec 2016: 51: 47–53.
[15]
Been J.V., Bok L.A., Andriessen P., Reiner W.O.: Epidemiology of pyri-doxine dependent seizures in the Netherlands. Arch Dis Child 2005; 90: 1293–1296.
[16]
Baxter P.: Epidemiology of pyridoxine dependent seizures in the UK. Arch Dis Child 1999; 81,5: 431–433.
[17]
Falsaperla R., Vari M.S., Toldo I., et al.: Pyridoxine-dependent epilepsies: an observational study on clinical, diagnostics, therapeutic and prognos-tic features in a pediatric cohort. Met Brain Dis 2018; 33: 261–269.
[18]
Baumgart A., Spiczak S.V., Verhoeven-Duif N.M. et al.: Atypical vitamin B6 deficiency: a rare cause of unexplained neonatal and infantile epilepsies. J Child Neurol 2014; 29: 704–707.
[19]
Mohamed-Ahmed A.H.A., Wilson M.P., Albuera M. et al.: Quality and stability of extemporaneous pyridoxal phosphate preparations used in the treatment of paediatric epilepsy. J Pharm Pharmacol 2017; 69: 480–488.
[20]
Pope S., Artuch R., Heales S. et al.: Cerebral foliate deficiency: Analytical test and differential diagnosis. J Inherit Metab Dis 2019 Jul;42(4):655–672. doi: 10.1002/jimd.12092. Epub 2019 May 2
[21]
Guliyeva U., Okur I., Dulac O. et al.: Epilepsy in biotinidase deficiency is distinct from early myoclonic encephalopathy. Neuropediatrics 2018; 49: 417–418.
[22]
Micó S.I., Jiménez R.D., Salcedo E.M. et al.: Epilepsy in biotinidase defi-ciency after biotin treatment.JIMD Rep 2012; 4: 75–78.
[23]
Donti T.R., Blackburn P.R., Atwal P.S.: Holocarboxylase synthetase defi-ciency pre- and post newborn screening. Mol Genet Metab Rep 2016; 7: 40–44.
[24]
Fons C., Campistol J.: Creatine defects and central nervous system. Se-min Pediatr Neurol 2016; 23: 285–289.
[25]
Stern W.M., Winston J.S., Murphy E. et al.: Guanidinoacetate methyl-transferase (GAMT) deficiency: a rare but treatable epilepsy. Pract Neu-rol 2017; 17: 207–211.
[26]
Mikati A.G., Abu Gheida I., Shamseddine A. et al.: Epileptic and electro-encephalographic manifestations of guanidinoacetate-methyltransfer-ase deficiency. Epileptic Disord 2013; 15: 407–416.
[27]
Stockler-Ipsiroglu S., van Karnebeek C.D.: Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders. Semin Neurol 2014; 34: 350–356.
[28]
Ma T., Wu Y., Chen B. et al.: D-Serine contributes to seizure development via ERK signaling. Front Neurosci 2019; 13: 254:1–12.
[29]
Durmaz M.S., Özbakır B.: Molybdenum cofactor deficiency: Neuroimag-ing findings. Radiol Case Rep 2018; 13: 592–595.
[30]
Hannah-Shmouni F., MacNeil L., Potter M. et al.: Severe cystic degenera-tion and intractable seizures in a newborn with molybdenum cofactor deficiency type B. Mol Genet Metab Rep 2018;20;18: 11–13.
[31]
Szczepanik E., Terczyńska I., Kruk M. et al.: Glucose transporter type 1 deficiency due to SLC2A1 mutations- a rare but treatable cause of meta-bolic epilepsy and extrapyramidal movement disorder: own experience and review. Dev Period Med 2015; 19: 454–463.
[32]
Vigevano F., Arzimanoglou A., Plouin P. et al.: Therapeutic approach to epileptic encephalopathies.Epilepsia2013; 54 Suppl 8: 45–50.
[33]
Pong A.W., Geary B.R., Engelstad K.M. et al.: Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia 2012; 53: 1503–1510.
[34]
Hyland K.: Cerebrospinal fluid analysis in the diagnosis of treatable in-herited disorders of neurotransmiter metabolism. Future Neurol2006; 1: 593–603.
[35]
Rai V., Kumar P.: Methylenetetrahydrofolate reductase C677T polymor-phism and susceptibility to epilepsy. Neurol Sci 2018; 39: 2033–2041.
[36]
D’Aco K.E., Bearden D., Watkins D. et al.: Severe 5,10-methylenetetrahy-drofolate reductase deficiency and two MTHFR variants in an adolescent with progressive myoclonic epilepsy. Pediatr Neurol 2014; 51: 266–270.
[37]
Hyland K.: Cerebrospinal fluid analysis in the diagnosis of treatable in-herited disorders of neurotransmitter metabolism. Future Neurol 2006; 1: 593–603.
[38]
Stence N.V., Fenton L.Z., Levek C. et al.: Brain imaging in classic nonke-totic hyperglycinemia: Quantitative analysis and relation to phenotype. J Inherit Metab Dis 2019; 42: 438–450.
[39]
Swanson M.A., Coughlin C.R. Jr, Scharer G.H. et al.: Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann Neurol 2015; 78: 606–618.
[40]
Bahi-Buisson N., Kaminska A., Nabbout R. et al.: Epilepsy in Menkes disease: analysis of clinical stages. Epilepsia 2006; 47: 380–386.
[41]
Vairo F.P.E., Chwal B.C., Perini S. et al.: A systematic review and evi-dence-based guideline for diagnosis and treatment of Menkes disease.Mol Genet Metab 2019; 126: 6–13.
[42]
Ołtarzewski M. Badania przesiewowe noworodków w Polsce, rok 2018. Postępy Neonatologii 2018; 24: 111–122.