[1]
Finkel R.S., McDermott M.P., Kaufmann P., et al.: Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014; 83: 810–817.
[2]
Munsat T.L., Davies K.E.: International SMA Consortium Meeting (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 1992; 2: 423–428.
[3]
Russman B.S.: Spinal muscular atrophy: Clinical classification and disease heterogeneity. J Child Neurol 2007; 22: 946–951.
[4]
Wang C.H., Finkel R.S., Bertini E.S., et al.: Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007; 22: 1027–1049.
[5]
Lefebvre S., Bürglen L., Reboullet S., et al.: Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155–165.
[6]
Verhaart I.E.C., Robertson A., Wilson I.J., et al.: Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - A literature review. Orphanet J Rare Dis 2017; 12.
[7]
Sugarman E.A., Nagan N., Zhu H., et al.: Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72 400 specimens. Eur Hum Genet 2012; 20: 27–32.
[8]
Hahnen E., Forkert R., Marke C., et al.: Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: Evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet 1995; 4: 1927–1933.
[9]
Feldkötter M., Schwarzer V., Wirth R., et al.: Quantitative analyses of SMN1 and SMN2 based on real-time lightcycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002; 70: 358–368.
[10]
Fujii H., Marsh C., Cairns P., et al.: Genetic divergence in the clonal evolution of breast cancer. Cancer Res 1996; 56: 1493–1497.
[11]
Lorson C.L., Hahnen E., Androphy E.J., et al.: A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci 1999; 96: 6307–6311.
[12]
Burnett B.G., Muñoz E., Tandon A., et al.: Regulation of SMN protein stability. Mol Cell Biol 2009; 29: 1107–1115.
[13]
Gubitz A., Feng W., Dreyfuss G.: The SMN complex. Exp Cell Res 2004; 296: 51–56.
[14]
Calucho M., Bernal S., Alías L., et al.: Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018; 28: 208–215.
[15]
Bernal S., Also-Rallo E., Martínez-Hernández R., et al.: Plastin 3 expres-sion in discordant spinal muscular atrophy (SMA) siblings. Neuromuscul Disord 2011; 21: 413–419.
[16]
Burghes A.H.: When is a deletion not a deletion? When it is converted. Am. J. Hum Genet 1997; 61: 9–15.
[17]
Beattie C.E., Kolb S.J.: Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins. Brain Res 2018; 1693: 92–97.
[18]
Cartegni L., Krainer A.R.: Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 2002; 30: 377–384.
[19]
Bebee T.W., Gladman J.T., Chandler D.S.: Splicing of the Survival Motor Neuron genes and implications for treatment of SMA. Front Biosci 2010; 15: 1191–1204.
[20]
Seo J., Singh N.N., Ottesen E.W., et al.: Oxidative stress triggers body-wide skipping of multiple exons of the spinal muscular atrophy gene. PLoS One 2016; 11(4): e0154390.
[21]
Singh N.N., Seo J., Rahn S.J., et al.: A Multi-Exon-Skipping Detection Assay Reveals Surprising Diversity of Splice Isoforms of Spinal Muscular Atrophy Genes. PLoS One 2012; 7(11): e49595.
[22]
Rochette C., Gilbert N., Simard L.: SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet 2001; 108: 255–266.
[23]
Schrank B., Gotz R., Gunnersen J.M., et al.: Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci 1997; 94: 9920–9925.
[24]
Paushkin S., Charroux B., Abel L., et al.: The Survival Motor Neuron Protein of Schizosacharomyces pombe. J Biol Chem 2000; 275: 23841–23846.
[25]
Miguel-Aliaga I., Culetto E., Walker D.S., et al.: The Caenorhabditis Elegans Orthologue of the Human Gene Responsible for Spinal Muscular Atrophy Is a Maternal Product Critical for Germline Maturation and Embryonic Viability. Hum Mol Genet 1999; 8: 2133–2143.
[26]
Battaglia G., Princivalle A., Forti F., et al.: Expression of the SMN Gene, the Spinal Muscular Atrophy Determining Gene, in the Mammalian Central Nervous System. Hum Mol Genet 1997; 6: 1961–1971.
[27]
Coovert D., Le T.T., McAndrew P.E., et al.: The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 1997; 6: 1205–1214.
[28]
Lorson C.L., Strasswimmer J., Yao J.M., et al.: SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 1998; 19: 63–66.
[29]
Gray K.M., Kaifer K.A., Baillat D., et al.: Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF Slmb degron. Mol Biol Cell 2018; 29: 96–110.
[30]
Burghes A.H.M., Beattie C.E.: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10: 597–609.
[31]
Han K.J., Foster D., Harhaj E.W., et al.: Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 2016; 25: 1392–1405.
[32]
Lafarga V., Tapia O., Sharma S., et al.: CBP-mediated SMN acetylation modulates Cajal body biogenesis and the cytoplasmic targeting of SMN. Cell Mol Life Sci 2018; 75: 527–546.
[33]
Ogg S.C., Lamond A.I.: Cajal bodies and coilin--moving towards function. J Cell Biol 2002; 159: 17–21.
[34]
Cioce M., Lamond A.I.: Cajal Bodies: A Long History of Discovery. Annu. Rev Cell Dev Biol 2005; 21: 105–131.
[35]
Raker V.A., Hartmuth K., Kastner B., et al.: Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol 1999; 19: 6554–6565.
[36]
Li D.K., Tisdale S., Lotti F., et al.: SMN control of RNP assembly: From post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 2014; 32: 22–29.
[37]
Pellizzoni L., Yong J., Dreyfuss G.: Essential Role for the SMN Complex in the Specificity of snRNP Assembly. Science 2002; 298: 1775–1779.
[38]
Blais A., Tsikitis M., Acosta-Alvear D., et al.: An initial blueprint for myogenic differentiation. Genes Dev 2005; 19: 553–569.
[39]
Cam H., Balciunaite E., Blais A., et al.: A Common Set of Gene Regulatory Networks Links Metabolism and Growth Inhibition. Mol Cell 2004; 16: 399–411.
[40]
Di Penta A., Mercaldo V., Florenzano F., et al.: Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol 2009; 184: 423–435.
[41]
Li H., Custer S.K., Gilson T., et al.: α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth. Hum Mol Genet 2015; 24: 7295–7307.
[42]
Briese M., Saal-Bauernschubert L., Ji C., et al.: hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons. Proc Natl Acad Sci 2018; 115: 2859–2868.
[43]
Rossoll W., Kröning A.K., Ohndorf U.M., et al.: Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 2002; 11: 93–105.
[44]
Mourelatos Z., Abel L., Yong J., et al.: SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 2001; 20: 5443–5452.
[45]
Rossoll W., Jablonka S., Andreassi C., et al.: Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J Cell Biol 2003; 163: 801–812.
[46]
Zhang H.L., Pan F., Hong D., et al.: Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 2003; 23: 6627–6637.
[47]
McWhorter M.L., Monani U.R., Burghes A.H.M., et al.: Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 2003; 162: 919–932.
[48]
Lambrechts A., Braun A., Jonckheere V., et al.: Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol Cell Biol 2000; 20: 8209–8219.
[49]
Sharma A., Lambrechts A., Hao L. thi, et al.: A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp. Cell Res., 2005; 309: 185–197.
[50]
Nölle A., Zeug A., van Bergeijk J., et al.: The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Hum Mol Genet 2011; 20: 4865–4878.
[51]
Bowerman M., Shafey D., Kothary R.: Smn Depletion Alters Profilin II Expression and Leads to Upregulation of the RhoA/ROCK Pathway and Defects in Neuronal Integrity. J Mol Neurosci 2007; 32: 120–131.
[52]
Martinez T.L., Kong L., Wang X., et al.: Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci 2012; 32: 8703–8715.
[53]
Tsuiji H., Iguchi Y., Furuya A., et al.: Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 2013; 5: 221–234.
[54]
Eggert C., Chari A., Laggerbauer B., et al.: Spinal muscular atrophy: the RNP connection. Trends Mol Med 2006; 12: 113–121.
[55]
Pellizzoni L.: Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Rep 2007; 8: 340–345.
[56]
Gabanella F., Butchbach M.E.R., Saieva L., et al.: Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs. PLoS One 2007; 2(9): e921.
[57]
Carrel T.L., McWhorter M.L., Workman E., et al.: Survival Motor Neuron Function in Motor Axons Is Independent of Functions Required for Small Nuclear Ribonucleoprotein Biogenesis. J Neurosci 2006; 26: 11014–11022.
[58]
Fan L., Simard L.R.: Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum Mol Genet 2002; 11: 1605–1614.
[59]
Chaytow H., Huang Y.T., Gillingwater T.H., et al.: The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75: 3877–3894.
[60]
Weber J.J., Clemensson L.E., Schiöth H.B., et al.: Olesoxime in neurodegenerative diseases: Scrutinising a promising drug candidate. Biochem Pharmacol 2019; 168: 305–318.
[61]
Martin L.J.: Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs 2010; 13: 568–580.
[62]
Bordet T., Buisson B., Michaud M., et al.: Identification and Characterization of Cholest-4-en-3-one, Oxime (TRO19622), a Novel Drug Candidate for Amyotrophic Lateral Sclerosis. J Pharmacol Exp Ther 2007; 322: 709–720.
[63]
Bertini E., Dessaud E., Mercuri E., et al.: Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16: 513–522.
[64]
Hwee D.T., Kennedy A.R., Hartman J.J., et al.: The Small-Molecule Fast Skeletal Troponin Activator, CK-2127107, Improves Exercise Tolerance in a Rat Model of Heart Failure. J Pharmacol Exp Ther 2015; 353: 159–168.
[65]
Andrews J.A., Miller T.M., Vijayakumar V., et al.: CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve 2018; 57: 729–734.
[66]
Feng Z., Ling K.K.Y., Zhao X., et al.: Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 2016; 25: 964–975.
[67]
Kirschner J., Schorling D., Hauschke D., et al.: Somatropin treatment of spinal muscular atrophy: A placebo-controlled, double-blind crossover pilot study. Neuromuscul Disord 2014; 24: 134–142.
[68]
Gandini R., Dossena S., Vezzoli V., et al.: LSm4 associates with the plasma membrane and acts as a co-factor in cell volume regulation. Cell Physiol Biochem 2008; 22: 579–590.
[69]
Corti S., Locatelli F., Papadimitriou D., et al.: Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 2006; 15: 167–187.
[70]
Corti S., Nizzardo M., Nardini M., et al.: Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008; 118: 3316–3330.
[71]
Corti S., Nizzardo M., Simone C., et al.: Genetic Correction of Human Induced Pluripotent Stem Cells from Patients with Spinal Muscular Atrophy. Sci Transl Med 2012; 4: 162–165.
[72]
Ando S., Funato M., Ohuchi K., et al.: The Protective Effects of Levetiracetam on a Human iPSCs-Derived Spinal Muscular Atrophy Model. Neurochem Res 2019; 44: 1773–1779.
[73]
Godfrey C., Desviat L.R., Smedsrød B., et al.: Delivery is key: lessons learnt from developing spliceαswitching antisense therapies. EMBO Mol Med 2017; 9: 545–557.
[74]
Sazani P., Kole R.: Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Invest 2003; 112: 481–486.
[75]
Havens M.A., Hastings M.L.: Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44: 6549–6563.
[76]
Zanetta C., Riboldi G., Nizzardo M., et al.: Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA). J Cell Mol Med 2014; 18: 187–196.
[77]
Hua Y., Sahashi K., Rigo F., et al.: Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011; 478: 123–126.
[78]
Nizzardo M., Simone C., Salani S., et al.: Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy α7 mouse model phenotype. Clin Ther 2014; 36: 340-356.
[79]
Porensky P.N., Mitrpant C., McGovern V.L., et al.: A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2012; 21: 1625–1638.
[80]
Chiriboga C.A., Swoboda K.J., Darras B.T., et al.: Results from a phase 1 study of nusinersen (ISIS-SMN Rx) in children with spinal muscular atrophy. Neurology 2016; 86: 890–897.
[81]
Finkel R.S., Chiriboga C.A., Vajsar J., et al.: Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017–3026.
[82]
Rigo F., Chun S.J., Norris D.A., et al.: Pharmacology of a central nervous system delivered 2’-O-methoxyethyl- modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 2014; 350: 46–55.
[83]
Kletzl H., Marquet A., Günther A., et al.: The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and Adres do korespondencji.Anna Szczerba: Katedra i Zakład Biologii Komórki, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu; ul. Rokietnicka 5D, Poznań abosacka@ump.edu.plsurvival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscul Disord 2019; 29(1):21–29.
[84]
Naryshkin N.A., Weetall M., Dakka A., et al.: Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 2014; 345: 688–693.
[85]
Sivaramakrishnan M., McCarthy K.D., Campagne S., et al.: Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 2017; 8: 1476.
[86]
Kletzl H., Marquet A., Günther A., et al.: The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscul Disord 2019; 29: 21–29.
[87]
Sturm S., Günther A., Jaber B., et al.: A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol 2019; 85: 181–193.
[88]
Byrnes A.: May 24, 2019 Summary Basis for Regulatory Action - ZOLGENSMA. 2019, [15 screen pages] Address; https://www.fda.gov/media/127961.
[89]
Hammond S.L., Leek A.N., Richman E.H., et al.: Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS One 2017; 12(12): e0188830.
[90]
Schuster D.J., Dykstra J.A., Riedl M.S., et al.: Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat 2014; 8: 42.
[91]
Mendell J.R., Al-Zaidy S., Shell R., et al.: Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 2017; 377: 1713–1722.