[1]
Nowak J., Januszkiewicz-Lewandowska D.: Perspektywy terapii genowej
chorób neurologicznych. Adv Psychiatry Neurol., 1997; 6: 61-65.
[2]
Renthal W.: Genomics to Gene Therapy in Neurology. Practical Neurology,
2019;18: 88-91.
[3]
Flotte T.: Gene therapy: The first two decades and the current state of the
art. J. Cell. Physiol., 2007; 213: 301-305.
[4]
Abreu N., Waldrop M.: Overview of gene therapy in spinal muscular atrophy
and Duchenne muscular dystrophy. Pediatr Pulmonol. 2020; 10: 1002.
[5]
Braun S.: Thérapies géniques de l’amyotrophie spinale infantile - Un
morceau d’histoire de la médecine [Gene-based therapies of spinal
muscular atrophy: a piece of history of medicine]. Med Sci, 2020; 36:
141-146.
[6]
Drewa G., Ferenc T.[red.],: Podstawy genetyki dla studentów i lekarzy.
Urban &Partner Wrocław 2003: 406.
[7]
Dunbar C., High K., Joung J., et al.: Gene therapy comes of age. Science,
2018: 359(6372): eaan4672
[8]
Czarnek M., Bereta J.: System CRISPR-Cas – od odporności bakterii do
inżynierii genomowej, Postepy Hig Med. Dosw 2016; 70: 901-916.
[9]
Gonçalves G., Paiva R. :Gene therapy: advances, challenges and
perspectives. Einstein (Sao Paulo). 2017; 15: 369-375.
[10]
Memi F., Ntokou A., Papangeli I.: CRISPR/Cas9 gene-editing: Research
technologies, clinical applications and ethical considerations. Semin in
Perinatol. 2018; 42: 487-500.
[11]
Wolter J., Mao H., Fragola G., et al.: Cas9 gene therapy for Angelman
syndrome traps Ube3a-ATS long non-coding RNA. Nature. 2020; 587:
281-284.
[12]
Li Q.: Nusinersen as a Therapeutic Agent for Spinal Muscular Atrophy.
Yonsei Med J. 2020; 61: 273-283.
[13]
Bennett C., Krainer A., Cleveland D.: Antisense Oligonucleotide Therapies
for Neurodegenerative Diseases. Annu Rev Neurosci. 2019; 42: 385-406.
[14]
Ravi B., Antonellis A., et al.: Genetic approaches to the treatment of
inherited neuromuscular diseases. Hum Mol Genet. 2019; 28(R1):
R55-R64.
[15]
Jędrzejwska M.: Próby terapeutyczne w dystrofii mięśniowej typu
Duchenne’a i rdzeniowym zaniku mięśni. Polski Przegląd Neurologiczny.
2010; 6, suplement A:34-35
[16]
Steinborn B.[red.], Neurologia wieku rozwojowego. PZWL Warszawa
2017: 719-720, 724, 726.
[17]
Waldrop M., Kolb S.: Current Treatment Options in Neurology-SMA
Therapeutics. Curr Treat Options Neurol. 2019; 21: 25.
[18]
Flotats-Bastardas M., Hahn A.: New Therapeutics Options for Pediatric
Neuromuscular Disorders. Front Pediatr. 2020; 8: 583877.
[19]
Sergott R., Amorelli G., Baranello G., et al.: Risdiplam treatment has not
led to retinal toxicity in patients with spinal muscular atrophy. Ann Clin
Transl Neurol. 2020; 8: 54-65.
[20]
Datta N, Ghosh P.: Update on Muscular Dystrophies with Focus on Novel
Treatments and Biomarkers. Curr Neurol Neurosci Rep. 2020; 20: 14.
[21]
Hausmanowa- Petrusewicz I. [red.], Choroby nerwowo- mięśniowe.
Wyd. II. Wydawnictwo Czelej Lublin 2013: 26-38.
[22]
Waldrop M., Flanigan K.: Update in Duchenne and Becker muscular
dystrophy. Curr Opin Neurol. 2019; 32: 722-727.
[23]
Echevarría L., Aupy P., Goyenvalle A.: Exon-skipping advances for
Duchenne muscular dystrophy. Hum Mol Genet. 2018; 27: R163-R172.
[24]
Duan D.: Systemic AAV Micro-dystrophin Gene Therapy for Duchenne
Muscular Dystrophy. Mol Ther. 2018; 26: 2337-2356.
[25]
Crudele J., Chamberlain J.:AAV-based gene therapies for the muscular
dystrophies. Hum Mol Genet. 2019; 28(R1): R102-R107.
[26]
Xu R., Jia Y., Zygmunt D.A., et al.: rAAVrh74.MCK.GALGT2 Protects
against Loss of Hemodynamic Function in the Aging mdx Mouse Heart.
Mol Ther. 2019; 27(3): 636-649.
[27]
Min Y., Bassel-Duby R., Olson E.: CRISPR Correction of Duchenne
Muscular Dystrophy. Annu Rev Med. 2019; 70: 239-255.
[28]
Urszula Fiszer [red], Podstawy neurologii z opisami przypadków
klinicznych, Termedia Poznań 2010: 232-234.
[29]
Mendell J., Chicoine L., Al-Zaidy S., et al.: Gene Delivery for Limb-Girdle
Muscular Dystrophy Type 2D by Isolated Limb Infusion. Hum Gene Ther.
2019; 30: 794-801.
[30]
Sahenk Z., Ozes B.: Gene therapy to promote regeneration in Charcot-
Marie-Tooth disease. Brain Res. 2020; 1727: 146533.
[31]
Timchenko L.: Correction of RNA-Binding Protein CUGBP1 and GSK3
Signaling as Therapeutic Approach for Congenital and Adult Myotonic
Dystrophy Type 1. Int J Mol Sci. 2019; 21: 94.