Vol. 30-31/2021-2022 Nr 60
okładka czasopisma Child Neurology
powiększenie okładki
Journal Info

CHILD NEUROLOGY

Journal of the Polish Society of Child Neurologists

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Semiannual


Powrót

Cortisol in individuals with autism spectrum disorders – review


Kortyzol u osób z zaburzeniami ze spektrum autyzmu - przegląd piśmiennictwa




Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poland

https://doi.org/10.20966/chn.2020.59.467
Neurol Dziec 2020; 29, 59: 36-44
Full text PDF Cortisol in individuals with autism spectrum disorders – review



ABSTRACT
Cortisol is a hormone crucial for homeostasis of the human organism. Many researchers proved the role of cortisol and its normal release rhythm in healthy individuals. It led to further investigations of the abnormalities in cortisol levels in those affected by various disorders , especially with neuropsychiatric symptoms. Autism spectrum disorder is one of these conditions which have been intensively researched due to its core and secondary symptoms. We conducted a systematic review of articles in PubMed, including papers that met the search criteria “autism” and “cortisol”. After initial selection of relevant papers, we analyzed data from 56 articles. We divided data into subcategories of studies concerning cortisol diurnal profile, basal cortisol levels, Cortisol Awakening Response (CAR) and cortisol levels in reaction to certain stimuli. Data was unequivocal, however, abnormal diurnal profile, basal level, CAR or stressor response were found in many research groups. It led to suspicion that the abnormalities of cortisol release are a widely-spread phenomenon among individuals with autism spectrum disorder. Very limited data from therapeutic interventions indicated more clinical than biological response. This systematic review should be a drive to action for further randomized clinical trial on larger, homogenous group of patients to obtain more thorough insight into the role of cortisol in autism spectrum disorder.

Key words: cortisol, autism spectrum disorder, children


STRESZCZENIE
Kortyzol jest jednym z kluczowych hormonów dla zachowania homeostazy w organizmie człowieka, co zostało wykazane w wielu badaniach u osób zdrowych. Zbadano również prawidłowy rytm uwalniania kortyzolu. Stanowi to podstawę do dalszych badań zaburzeń wydzielania kortyzolu w różnych schorzeniach, szczególnie tych objawiających się zaburzeniami neuropsychiatrycznymi. Zaburzenia ze spektrum autyzmu stanowią jeden z najintensywniej badanych problemów zdrowotnych ze względu na objawy osiowe autyzmu, takie jak lęk czy zaburzenia społeczne i zachowania, jak również dodatkowe objawy, takie jak zaburzenia snu czy czynnościowe przewodu pokarmowego. Przeprowadziliśmy systematyczny przegląd piśmiennictwa w bazie PubMed, uwzględniając artykuły spełniające kryteria wyszukiwania “autism” (autyzm) i “cortisol” (kortyzol). Po pierwotnej selekcji istotnych prac, przeanalizowaliśmy 56 artykułów. Omawianie wyników podzieliliśmy na podkategorie, dotyczące profilu dobowego kortyzolu, podstawowych jego poziomów, wydzielania przy obudzeniu oraz poziomów w reakcji na konkretny bodziec. Analizowane dane były niejednoznaczne. Zaburzenia profilu dobowego kortyzolu, podstawowego jego poziomu, wydzielania przy obudzeniu oraz poziomów w reakcji na stresor stanowiły jednakże częste zjawisko wśród badanych osób z zaburzeniami ze spektrum autyzmu. Nieliczne dane dotyczące wpływu prowadzonych działań terapeutycznych wskazywały na częściej osiąganą kliniczną poprawę niż zmiany w stężeniu kortyzolu. Poniższy przegląd piśmiennictwa powinien stanowić podstawę do przeprowadzenia randomizowanych badań klinicznych na dużej, homogennej grupie, by uzyskać bardziej wnikliwe spojrzenie na rolę kortyzolu w zaburzeniach ze spektrum autyzmu.

Słowa kluczowe: kortyzol, autyzm, dzieci


BIBLIOGRAPHY
[1] 
McEwen B.S.: Protective and damaging effects of stress mediators. Dialogues Clin Neurosci. 2006; 8: 367–381.
[2] 
McEwen B.S.: What Is the Confusion With Cortisol? Chronic Stress. 2019; 3: 2470547019833647.
[3] 
McEwen B.S., Karatsoreos I.N.: Sleep Deprivation and Circadian Disruption: Stress, Allostasis, and Allostatic Load. Sleep Med Clin. 2015; 10: 1–10.
[4] 
Liston C., Cichon J.M., Jeanneteau F., et al.: Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nature Neuroscience. 2013; 16: 698–705.
[5] 
Sharpley C.F., Bitsika V., Agnew L.L., et al.: Is daily replication necessary when sampling cortisol concentrations in association studies of children with autism spectrum disorder? A systematic review and discussion paper. Reviews in the Neurosciences. 2017; 28: 103–111.
[6] 
Onishi S., Miyazawa G., Nishimura Y., et al.: Postnatal development of circadian rhythm in serum cortisol levels in children. Pediatrics. 1983; 72: 399–404.
[7] 
Touitou Y., Sulon J., Bogdan A., et al.: Adrenocortical hormones, ageing and mental condition: seasonal and circadian rhythms of plasma 18-hydroxy-11-deoxycorticosterone, total and free cortisol and urinary corticosteroids. J Endocrinol. 1983; 96: 53–64.
[8] 
Levine M.E., Milliron A.N., Duffy L.K.: Diurnal and seasonal rhythms of melatonin, cortisol and testosterone in interior Alaska. Arctic Med Res. 1994; 53: 25–34.
[9] 
Aschoff J., Fatranska M., Giedke H., et al.: Human circadian rhythms in continuous darkness: entrainment by social cues. Science. 171 (3967): 213–215.
[10] 
King B.H., Navot N., Bernier R., et al.: Update on diagnostic classification in autism. Curr Opin Psychiatry. 2014; 27: 105–109.
[11] 
van Steensel F.J.A., Bögels S.M., Perrin S.: Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev. 2011; 14: 302–317.
[12] 
Simon D.M., Corbett B.A.: Examining associations between anxiety and cortisol in high functioning male children with autism. J Neurodevelop Disord. 2013; 5: 32.
[13] 
Devnani P.A., Hegde A.U.: Autism and sleep disorders. J Pediatr Neurosci. 2015; 10: 304–307.
[14] 
Mayer E.A.: The neurobiology of stress and gastrointestinal disease. Gut. 2000; 47: 861–869.
[15] 
Pruessner J., Wolf O., Hellhammer D.H., et al.: Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sciences. 1997; 61: 2539–2549.
[16] 
Sapolsky R.M., Krey L., McEwen B.S.: The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986; 7: 284–301.
[17] 
Chrousos G.P.: Stress and disorders of the stress system. Nat Rev Endocrinol. 2009; 5: 374–381.
[18] 
Schiefelbein V.L., Susman E.J.: Cortisol Levels and Longitudinal Cortisol Change as Predictors of Anxiety in Adolescents. The Journal of Early Adolescence. 2006; 26: 397–413.
[19] 
Yamazaki K., Saito Y., Okada F., et al.: An application of neuroendocrinological studies in autistic children and Heller’s syndrome. J Autism Dev Disord. 1975;5: 323–332.
[20] 
Hill S.D., Wagner E.A., Shedlarski J.G., et al.: Diurnal cortisol and temperature variation of normal and autistic children. Dev Psychobiol. 1977; 10: 579–583.
[21] 
Sandman C.A., Barron J.L., Chicz-DeMet A., et al.: Brief Report: Plasma- Endorphin and Cortisol Levels in Autistic Patients. J Autism Dev Disord. 1991; 21: 83-87.
[22] 
Nir I., Meir D., Zilber N., et al.: Brief report: Circadian melatonin, thyroid- stimulating hormone, prolactin, and cortisol levels in serum of young adults with autism. J Autism Dev Disord. 1995; 25: 641–654.
[23] 
Aihara R., Hashimoto T.: [Neuroendocrinologic studies on autism]. No To Hattatsu. 1989; 21: 154–162.
[24] 
Richdale A.L., Prior M.: Urinary cortisol circadian rhythm in a group of high-functioning children with autism. J Autism Dev Disord. 1992; 22: 433–437.
[25] 
Lakshmi Priya M.D., Geetha A., Suganya V., et al.: Abnormal circadian rhythm and cortisol excretion in autistic children: a clinical study. Croat Med J. 2013; 54: 33–41.
[26] 
Corbett B., Mendoza S., Abdullah M., et al.: Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology. 2006; 31: 59–68.
[27] 
Marinović-Ćurin J., Marinović-Terzić I., Bujas-Petković Z., et al.: Slower cortisol response during ACTH stimulation test in autistic children. Eur Child Adolesc Psychiatry. 2008; 17: 39–43.
[28] 
Corbett B.A., Schupp C.W., Levine S., et al.: Comparing cortisol, stress, and sensory sensitivity in children with autism. Autism Res. 2009; 2: 39–49.
[29] 
Corbett B.A., Mendoza S., Wegelin J.A., et al.: Variable cortisol circadian rhythms in children with autism and anticipatory stress. J Psychiatry Neurosci. 2008; 33: 227–234.
[30] 
Gabriels R.L., Agnew J.A., Pan Z., et al.: Elevated repetitive behaviors are associated with lower diurnal salivary cortisol levels in autism spectrum disorder. Biological Psychology. 2013; 93: 262–268.
[31] 
Kidd S.A., Corbett B.A., Granger D.A., et al.: Daytime Secretion of Salivary Cortisol and Alpha-Amylase in Preschool-Aged Children with Autism and Typically Developing Children. J Autism Dev Disord. 2012; 42: 2648–2658.
[32] 
Tordjman S., Anderson G.M., Kermarrec S., et al.: Altered circadian patterns of salivary cortisol in low-functioning children and adolescents with autism. Psychoneuroendocrinology. 2014; 50: 227–245.
[33] 
Bitsika V., Sharpley C.F., Andronicos N.M.: Hypothalamus–pituitary– adrenal axis daily fluctuation, anxiety and age interact to predict cortisol concentrations in boys with an autism spectrum disorder. Physiology & Behavior. 2015; 138: 200–207.
[34] 
Tomarken A.J., Han G.T., Corbett B.A.: Temporal patterns, heterogeneity, and stability of diurnal cortisol rhythms in children with autism spectrum disorder. Psychoneuroendocrinology. 2015; 62: 217–226.
[35] 
Ogawa S., Lee Y.-A., Yamaguchi Y., et al.: Associations of acute and chronic stress hormones with cognitive functions in autism spectrum disorder. Neuroscience. 2017; 343: 229–239.
[36] 
Muscatello R.A., Corbett B.A.: Comparing the effects of age, pubertal development, and symptom profile on cortisol rhythm in children and adolescents with autism spectrum disorder: Development and Diurnal Rhythm in ASD. Autism Research. 2018; 11: 110–120.
[37] 
Baker E.K., Richdale A.L., Hazi A., et al.: Assessing a hyperarousal hypothesis of insomnia in adults with autism spectrum disorder. Autism Research. 2019; 12: 897–910.
[38] 
Hoshino Y., Yokoyama F., Watanabe M., et al.: The Diurnal Variation and Response to Dexamethasone Suppression Test of Saliva Cortisol Level in Autistic Children. Psychiatry Clin Neurosci. 1987; 41: 227–235.
[39] 
Jensen J.B., Realmuto G.M., Garfinkel B.D.: The Dexamethasone Suppression Test in Infantile Autism. Journal of the American Academy of Child Psychiatry. 1985; 24: 263–265.
[40] 
Hoshino Y., Yoshinori O., Murata S., et al.: Dexamethasone Suppression Test in Autistic Children. Psychiatry and Clinical Neurosciences. 1984; 38 :445–459.
[41] 
El-Fahran N., Rees D.A., Evans C.: Measuring cortisol in serum, urine and saliva – are our assays good enough? Ann Clin Biochem. 2017; 54: 308–322.
[42] 
Kirschbaum C., Hellhammer D.H.: Salivary cortisol in psychoneuro- endocrine research: Recent developments and applications. Psychoneuroendocrinology. 1994; 19: 313–333.
[43] 
Marinović-Ćurin J., Terzić J., Bujas-Petković Z., et al.: Lower Cortisol and Higher ACTH Levels in Individuals with Autism. J Autism Dev Disord. 2003; 33: 443–448.
[44] 
Bitsika V., Sharpley C.F., Agnew L.L., et al.: Age-related differences in the association between stereotypic behaviour and salivary cortisol in young males with an Autism Spectrum Disorder. Physiology & Behavior. 2015; 152: 238–243.
[45] 
Hamza R.T., Hewedi D.H., Ismail M.A.: Basal and Adrenocorticotropic Hormone Stimulated Plasma Cortisol Levels Among Egyptian Autistic Children: Relation to Disease Severity. Ital J Pediatr. 2010; 36: 71.
[46] 
Hassan M.H., Desoky T., Sakhr H.M., et al.: Possible Metabolic Alterations among Autistic Male Children: Clinical and Biochemical Approaches. J Mol Neurosci. 2019; 67: 204-216.
[47] 
Iwata K., Matsuzaki H., Miyachi T., et al.: Investigation of the serum levels of anterior pituitary hormones in male children with autism. Mol Autism. 2011; 2: 16.
[48] 
Tani P., Lindberg N., Matto V., et al.: Higher plasma ACTH levels in adults with Asperger syndrome. Journal of Psychosomatic Research. 2005; 58: 533–536.
[49] 
Bakker-Huvenaars M.J., Greven C.U., Herpers P., et al.: Saliva oxytocin, cortisol, and testosterone levels in adolescent boys with autism spectrum disorder, oppositional defiant disorder/conduct disorder and typically developing individuals. European Neuropsychopharmacology. 2020; 30: 87–101.
[50] 
Croonenberghs J., Spaas K., Wauters A., et al.: Faulty serotonin – DHEA interactions in autism: results of the 5-hydroxytryptophan challenge test. Neuro Endocrinol Lett. 2008; 29: 385-390.
[51] 
Hadlow N., Collier S., Wardrop R., et al.: Variation of serum cortisol with age and gender. Address: : https://www.aacb.asn.au/documents/ item/508, access: 13.02.2021.
[52] 
Goodyer I.M., Park R.J., Netherton C.M., et al.: Possible role of cortisol and dehydroepiandrosterone in human development and psychopathology. Br J Psychiatry. 2001; 179: 243–249.
[53] 
McEwen B.S.: Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci. 2004; 1032: 1–7.
[54] 
Bastianetto S., Ramassamy C., Poirier J., et al.: Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res. 1999 20; 66: 35–41.
[55] 
Diamond D.M., Branch B.J., Fleshner M., et al.: Effects of dehydroepiandrosterone sulfate and stress on hippocampal electrophysiological plasticity. Ann N Y Acad Sci. 1995; 774: 304–307.
[56] 
Compagnone N.A., Mellon S.H.: Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci U S A. 1998; 95: 4678–4683.
[57] 
Cardounel A., Regelson W., Kalimi M.: Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action. Proc Soc Exp Biol Med . 1999; 222: 145–149.
[58] 
Clow A., Thorn L., Evans P., et al.: The awakening cortisol response: methodological issues and significance. Stress. 2004; 7: 29–37.
[59] 
Fries E., Dettenborn L., Kirschbaum C.: The cortisol awakening response (CAR): facts and future directions. Int J Psychophysiol. 2009; 72: 67–73. Zuzanna Lewandowska, Katarzyna Mazur-Melewska , Magdalena Figlerowiczr e V i e W p A p e r s 44C h i l d n e u r o l o g y
[60] 
Brosnan M., Turner-Cobb J., Munro-Naan Z., et al.: Absence of a normal Cortisol Awakening Response (CAR) in adolescent males with Asperger Syndrome (AS). Psychoneuroendocrinology. 2009; 34: 1095–1100.
[61] 
Wilhelm I., Born J., Kudielka B.M., et al.: Is the cortisol awakening rise a response to awakening? Psychoneuroendocrinology. 2007; 32: 358– 366.
[62] 
Rosmalen J.G.M., Oldehinkel A.J., Ormel J., et al.: Determinants of salivary cortisol levels in 10-12 year old children; a population-based study of individual differences. Psychoneuroendocrinology. 2005; 30: 483–495.
[63] 
Zinke K., Fries E., Kliegel M., et al.: Children with high-functioning autism show a normal cortisol awakening response (CAR). Psychoneuroendocrinology. 2010; 35: 1578–1582.
[64] 
Bitsika V., Sharpley C.F., Sweeney J.A., et al.: HPA and SAM axis responses as correlates of self- vs parental ratings of anxiety in boys with an Autistic Disorder. 2014; 7.
[65] 
Corbett B.A., Swain D.M., Newsom C., et al.: Biobehavioral profiles of arousal and social motivation in autism spectrum disorders. J Child Psychol Psychiatr. 2014; 55: 924–934.
[66] 
Sharpley C.F., Bitsika V., Andronicos N.M., et al.: Further evidence of HPA-axis dysregulation and its correlation with depression in Autism Spectrum Disorders: Data from girls. Physiology & Behavior. 2016; 167: 110–117.
[67] 
Pan Z., Granger D.A., Guérin N.A. et al.: Replication Pilot Trial of Therapeutic Horseback Riding and Cortisol Collection With Children on the Autism Spectrum. Front Vet Sci. 2019; 5: 312.
[68] 
Viau R., Arsenault-Lapierre G., Fecteau S., et al.: Effect of service dogs on salivary cortisol secretion in autistic children. Psychoneuroendocrinology. 2010; 35: 1187–1193.
[69] 
Corbett B.A., Blain S.D., Ioannou S., et al.: Changes in anxiety following a randomized control trial of a theatre-based intervention for youth with autism spectrum disorder. Autism. 2017; 21: 333–343.
[70] 
Naber F.B.A., Swinkels S.H.N., Buitelaar J.K., et al.: Attachment in Toddlers with Autism and Other Developmental Disorders. J Autism Dev Disord. 2007; 37: 1123–1138.
[71] 
Lopata C., Volker M.A., Putnam S.K., et al.: Effect of Social Familiarity on Salivary Cortisol and Self-Reports of Social Anxiety and Stress in Children with High Functioning Autism Spectrum Disorders. J Autism Dev Disord. 2008; 38: 1866–1877.
[72] 
Corbett B.A., Schupp C.W., Simon D., et al.: Elevated cortisol during play is associated with age and social engagement in children with autism. Mol Autism. 2010; 1: 13.
[73] 
Lanni K.E., Schupp C.W., Simon D., et al.: Verbal ability, social stress, and anxiety in children with Autistic Disorder. Autism. 2012; 16: 123–138.
[74] 
Spratt E.G., Nicholas J.S., Brady K.T., et al.: Enhanced Cortisol Response to Stress in Children in Autism. J Autism Dev Disord. 2012; 42: 75–81.
[75] 
Schupp C.W., Simon D., Corbett B.A.: Cortisol Responsivity Differences in Children with Autism Spectrum Disorders During Free and Cooperative Play. J Autism Dev Disord. 2013; 43: 2405–2417.
[76] 
Hollocks M.J., Howlin P., Papadopoulos A.S., et al.: Differences in HPA- axis and heart rate responsiveness to psychosocial stress in children with autism spectrum disorders with and without co-morbid anxiety. Psychoneuroendocrinology. 2014; 46: 32–45.
[77] 
Mikita N., Hollocks M.J,. Papadopoulos A.S., et al.: Irritability in boys with autism spectrum disorders: an investigation of physiological reactivity. J Child Psychol Psychiatr. 2015; 56: 1118–1126. Corresponding author: Magdalena Figlerowicz, Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, Poland; e-mail address: mfiglerowicz@gmail.com
[78] 
Edmiston E.K., Merkle K., Corbett B.A.: Neural and cortisol responses during play with human and computer partners in children with autism. Social Cognitive and Affective Neuroscience. 2015; 10: 1074–1083.
[79] 
Edmiston E.K., Blain S.D., Corbett B.A.: Salivary cortisol and behavioral response to social evaluative threat in adolescents with autism spectrum disorder: Cortisol Response in adolescents with Autism. Autism Research. 2017; 10: 346–358.
[80] 
Corbett B.A., Muscatello R.A., Kim A., et al.: Developmental effects in physiological stress in early adolescents with and without autism spectrum disorder. Psychoneuroendocrinology. 2021; 125: 105115.
[81] 
Ferguson B.J., Marler S., Altstein L.L., et al.: Associations between cytokines, endocrine stress response, and gastrointestinal symptoms in autism spectrum disorder. Brain, Behavior, and Immunity. 2016; 58: 57–62.
[82] 
Bishop-Fitzpatrick L., Minshew N.J., Mazefsky C.A., et al.: Perception of Life as Stressful, not Biological Response to Stress, is Associated with Greater Social Disability in Adults with Autism Spectrum Disorder. 2018; 27.
[83] 
Matherly S.M., Klusek J., Thurman A.J., et al.: Cortisol profiles differentiated in adolescents and young adult males with fragile X syndrome versus autism spectrum disorder. Dev Psychobiol. 2018; 60: 78–89.
[84] 
Corbett B.A., Muscatello R.A., Baldinger C.: Comparing stress and arousal systems in response to different social contexts in children with ASD. Biological Psychology. 2019; 140: 119–130.
[85] 
Corbett B.A., Muscatello R.A., Blain S.D.: Impact of Sensory Sensitivity on Physiological Stress Response and Novel Peer Interaction in Children with and without Autism Spectrum Disorder. Front Neurosci. 2016; 10.
[86] 
Abdulla A., Hegde A.: Salivary Cortisol Levels and its Implication on Behavior In Children with Autism during Dental Treatment. Journal of Clinical Pediatric Dentistry. 2015; 39: 128–132.
[87] 
Qin D., Rizak J., Feng X., et al.: Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Scientific Reports. 2016; 6: 30187.
[88] 
Gunnar M.R., Donzella B.: Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology. 2002; 27: 199–220.
[89] 
Finegood E.D., Wyman C., O’Connor T.G., et al.: Salivary Cortisol and Cognitive Development in Infants From Low-Income Communities. Stress. 2017; 20: 112–121.
[90] 
Sapolsky R.M., Uno H., Rebert C.S., et al.: Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990; 10: 2897–2902.
[91] 
Arbel I., Kadar T., Silbermann M., et al.: The effects of long-term corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats. Brain Research. 1994; 657: 227–235.
[92] 
de Souza-Talarico J.N., Marin M.-F., Sindi S., et al.: Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement Neuropsychol. 2011; 5: 8–16.
[93] 
Green K.N., Billings L.M., Roozendaal B., et al.: Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006; 26: 9047–9056.
[94] 
Elgh E., Lindqvist Astot A., Fagerlund M., et al.: Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry. 2006; 59: 155–161.
Powrót
 

Most downloaded
Semiologiczna i psychiatryczna charakterystyka dzieci z psychogennymi napadami rzekomopadaczkowymi
Neurol Dziec 2018; 27, 55: 11-14
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17

Article tools
Export Citation
Format:

Scholar Google
Articles by:Lewandowska Z
Articles by:Mazur-Melewska K
Articles by:Figlerowicz M

PubMed
Articles by:Lewandowska Z
Articles by:Mazur-Melewska K
Articles by:Figlerowicz M


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych