Vol. 27/2018 Issue 55
okładka czasopisma Child Neurology
powiększenie okładki
Journal Info

CHILD NEUROLOGY

Journal of the Polish Society of Child Neurologists

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Semiannual

EVALUATION
Polish Ministry of Science and Higher Education: 11
Index Copernicus: 80,00



Powrót

Badania wolumetryczne i dyfuzji rezonansu magnetycznego w neurologii dziecięcej


Volumetric and diffusion magnetic resonance imaging in pediatric neurology




Klinika Rehabilitacji Dziecięcej Uniwersytetu Medycznego w Białymstoku

Neurol Dziec 2009; 18, 35: 17-22
Full text PDF Badania wolumetryczne i dyfuzji rezonansu magnetycznego w neurologii
dziecięcej



STRESZCZENIE
W ostatnich latach dokonał się ogromny postęp w diagnostyce neuroobrazowej, a w szczególności rozwój nowych technik rezonansu magnetycznego (MR) mózgu budzi duże nadzieje. Badania neuroobrazowe ilościowe: badania wolumetryczne MR istoty szarej i białej, dyfuzji MR i tensora dyfuzji MR stwarzają możliwości diagnostyczne w wielu schorzeniach układu nerwowego u dzieci. Pozwalają także na śledzenie i pomiar, w sposób ilościowy, zachodzących procesów przebudowy i reorganizacji mózgu. Prawdopodobnie w niedalekiej przyszłości badania ilościowe MR będą podstawowymi metodami diagnostycznymi w neuropediatrii.

Słowa kluczowe: badania wolumetryczne MR, dyfuzja MR, choroby układu nerwowego


ABSTRACT
Great progress in neuroimaging has been made in the recent years. Particularly the development of the new techniques of magnetic resonance imaging (MRI) is very promising. Quantitative neuroimaging studies: volumetric MRI of gray and white matter, diffusion MRI and diffusion tensor MRI bring new diagnostic possibilities in various disorders of nervous system in children. These new techniques allow to monitor and measure quantitatively the processes of and reconstruction of the developing brain. Probably in the near future quantitative MRI studies will be the basic diagnostic methods in neuropediatrics.

Key words: volumetric MRI studies, diffusion MRI, disorders of nervous system


PIŚMIENNICTWO
[1] 
Kubas B., Sobaniec W., Kułak W. et al.: Zastosowanie spektroskopii protonowej rezonansu magnetycznego 1HMRS w diagnostyce guzów mózgu u dzieci - doniesienie wstępne. Neur. Dziec., 2008:17, 21-27.
[2] 
Demaerel P.: In vivo localized single-voxel proton magnetic resonance spectroscopy of intracranial tumors. Int. J. Neuroradiol., 1997:3, 94- 100.
[3] 
Uysal E., Erturk M., Yildirim H. et al.: Multivoxel magnetic resonance spectroscopy in gliomatosis cerebri. Acta Radiol., 2005:46, 621-624.
[4] 
Kułak W., Sobaniec W., Śmigielska-Kuzia J. et al.: Metabolite profile in the basal ganglia of children with cerebral palsy: a proton magnetic resonance spectroscopy study. Dev. Med. Child Neurol., 2006:48, 285-289.
[5] 
Maneru C, Junque C, Bargallo N. et al.: (1)H-MR spectroscopy is sensitive to subtle effects of perinatal asphyxia. Neurology, 2001:25, 1115-1118.
[6] 
Śmigielska-Kuzia J., Sobaniec W.: Brain metabolic profile obtained by proton magnetic resonance spectroscopy HMRS in children with Down syndrome. Adv. Med. Sci., 2007:52, 183-187.
[7] 
Thijs V.N., Adami A., Neumann-Haefelin T. et al: Relationship between severity of MR perfusion deficit and DWI lesion evolution. Neurology, 2001:57, 1205-1211.
[8] 
Brunberg J.A., Chenevert T.L., McKeever P.E. et al.: In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am. J. Neuroradiol., 1995:16, 361-371.
[9] 
Lansberg M.G., Norbash A.M., Marks M.P. et al.: Advantages of adding diffusion- weighted magnetic resonance imaging to conventional magnetic resonance imaging for evaluating acute stroke. Arch. Neurol., 2000:57, 1311-1316.
[10] 
Lutsep H.L., Albers G.W., DeCrespigny A. et al.: Clinical utility of diffusion- weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann. Neurol., 1997:41, 547-548.
[11] 
Hergan K., Schaefer P.W., Sorensen A.G. et al.: Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur. Radiol., 2002:12, 2536-2541.
[12] 
Rovaris M., Filippi M.: Diffusion tensor MRI in multiple sclerosis. J. Neuroimaging, 2007:17, 27-30.
[13] 
Guan X., Lai S., Lackey J. et al.: Revisiting anaplastic astrocytomas II: further characterization of an expansive growth pattern with visually enhanced diffusion tensor imaging. J. Magn. Reson. Imaging., 2008:28, 1322-1336.
[14] 
Catani M., Howard R.J., Pajevic S. et al.: Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage, 2002:17, 77-94.
[15] 
Wakana S., Jiang H., Nagae-Poetscher L.M.: Fiber tract-based atlas of human white matter anatomy. Radiology, 2004:230, 77-87.
[16] 
Schneider J.F., Il’yasov K.A., Hennig J. et al.: Fast quantitative diffusiontensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology, 2004:46, 258-266.
[17] 
Hermoye L., Saint-Martin C., Cosnard G. et al.: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage, 2006:29, 493-504.
[18] 
Thomas B., Eyssen M., Peeters R. et al.: Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain, 2005:128, 2562-2577.
[19] 
Huang H., Zhang J., Wakana S. et al.: White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage, 2006: 15, 33, 27-38.
[20] 
Mori S., Crain B.J., Chacko V.P. et al.: Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol., 1999:45, 265-269.
[21] 
Kiechl-Kohlendorfer U., Ralser E., Pupp Peglow U. et al.: Adverse neurodevelopmental outcome in preterm infants: risk factor profiles for different gestational ages. Acta Paediatr., 2009:98, 792-796.
[22] 
Hnatyszyn G.: Przydatność tomografii rezonansu magnetycznego głowy w diagnostyce zmian niedotlenieniowoniedokrwiennych u noworodków Neur. Dziec., 2007:16, 7-12.
[23] 
Hoon Jr A.H., Stashinko E.E., Nagae L.M. et al.: Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways. Dev. Med. Child Neurol., 2009 [Epub ahead of print]
[24] 
Dyet L.E., Kennea N., Counsell S.J. et al.: Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics, 2006:118, 536-548.
[25] 
Bodensteiner J.B., Johnsen SD.: Magnetic resonance imaging (MRI) findings in children surviving extremely premature delivery and extremely low birthweight with cerebral palsy. J. Child Neurol., 2006:21, 743-747.
[26] 
Boardman J.P., Counsell S.J., Rueckert D. et al.: Abnormal deep grey matter development following preterm birth detected using deformationbased morphometry. Neuroimage, 2006:32, 70-78.
[27] 
Deipolyi A.R., Mukherjee P., Gill K. et al.: Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: Diffusion tensor imaging versus cortical gyration. Neuroimage, 2005:2, 579-586.
[28] 
Constable R.T., Ment L.R., Vohr B.R. et al.: Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects. Pediatrics, 2008:121, 306-316.
[29] 
Ment L.R., Kesler S., Vohr B. et al.: Longitudinal brain volume changes in preterm and term control subjects during late childhood and adolescence. Pediatrics, 2009:123, 503-511.
[30] 
Mahone E.M., Martin R., Kates W.R. et al.: Neuroimaging correlates of parent ratings of working memory in typically developing children. J. Int. Neuropsychol. Soc., 2009:15, 31-41.
[31] 
Merkley T.L., Bigler E.D., Wilde E.A. et al.: Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Neurotrauma, 2008:25, 1343-1345.
[32] 
Yang P., Wang P.N., Chuang K.H. et al : Absence of gender effect on children with attention-deficit/hyperactivity disorder as assessed by optimized voxel-based morphometry. Psychiatry Res., 2008:164, 245-253.
[33] 
McAlonan G.M., Cheung V., Cheung C. et al.: Mapping brain structure in attention deficit-hyperactivity disorder: a voxel-based MRI study of regional grey and white matter volume. Psychiatry Res., 2007:154, 171-180.
[34] 
Overmeyer S., Bullmore E.T., Suckling J. et al.: Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol. Med., 2001:31, 1425-1435.
[35] 
Gilbert A.R., Keshavan M.S., Diwadkar V. et al.: Gray matter differences between pediatric obsessive-compulsive disorder patients and high-risk siblings: a preliminary voxel-based morphometry study. Neurosci. Lett., 2008:435, 45-50.
[36] 
Carter J.C., Capone G.T., Kaufmann W.E.: Neuroanatomic correlates of autism and stereotypy in children with Down syndrome. Neuroreport, 2008:19, 653-656.
[37] 
Zeegers M., Pol H.H., Durston S. et al.: No differences in MR-based volumetry between 2- and 7-year-old children with autism spectrum disorder and developmental delay. Brain Dev., 2008 [Epub ahead of print] Adres do korespondencji: Wojciech Kułak, Klinika Rehabilitacji Dziecięcej Uniwersytetu Medycznego w Białymstoku ul. Waszyngtona 17, 15-274 Białystok, kneur2@wp.pl
[38] 
Jou R.J, Minshew N.J, Melhem N.M. et al.: Brainstem volumetric alterations in children with autism. Psychol. Med., 2008:24, 1-8.
Powrót
 

Most downloaded
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17
Funkcjonalne systemy klasyfikacyjne w mózgowym porażeniu dziecięcym – Communication Function Classification System
Neurol Dziec 2014; 23, 46: 35-38

Article tools
Export Citation
Format:

Scholar Google
Articles by:Kułak W

PubMed
Articles by:Kułak W


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych