[1]
Kubas B., Sobaniec W., Kułak W. et al.: Zastosowanie spektroskopii
protonowej rezonansu magnetycznego 1HMRS w diagnostyce guzów
mózgu u dzieci - doniesienie wstępne. Neur. Dziec., 2008:17, 21-27.
[2]
Demaerel P.: In vivo localized single-voxel proton magnetic resonance
spectroscopy of intracranial tumors. Int. J. Neuroradiol., 1997:3, 94-
100.
[3]
Uysal E., Erturk M., Yildirim H. et al.: Multivoxel magnetic resonance
spectroscopy in gliomatosis cerebri. Acta Radiol., 2005:46, 621-624.
[4]
Kułak W., Sobaniec W., Śmigielska-Kuzia J. et al.: Metabolite profile in
the basal ganglia of children with cerebral palsy: a proton magnetic resonance
spectroscopy study. Dev. Med. Child Neurol., 2006:48, 285-289.
[5]
Maneru C, Junque C, Bargallo N. et al.: (1)H-MR spectroscopy is sensitive
to subtle effects of perinatal asphyxia. Neurology, 2001:25, 1115-1118.
[6]
Śmigielska-Kuzia J., Sobaniec W.: Brain metabolic profile obtained by
proton magnetic resonance spectroscopy HMRS in children with Down
syndrome. Adv. Med. Sci., 2007:52, 183-187.
[7]
Thijs V.N., Adami A., Neumann-Haefelin T. et al: Relationship between
severity of MR perfusion deficit and DWI lesion evolution. Neurology,
2001:57, 1205-1211.
[8]
Brunberg J.A., Chenevert T.L., McKeever P.E. et al.: In vivo MR determination
of water diffusion coefficients and diffusion anisotropy: correlation
with structural alteration in gliomas of the cerebral hemispheres.
AJNR Am. J. Neuroradiol., 1995:16, 361-371.
[9]
Lansberg M.G., Norbash A.M., Marks M.P. et al.: Advantages of adding diffusion-
weighted magnetic resonance imaging to conventional magnetic
resonance imaging for evaluating acute stroke. Arch. Neurol., 2000:57,
1311-1316.
[10]
Lutsep H.L., Albers G.W., DeCrespigny A. et al.: Clinical utility of diffusion-
weighted magnetic resonance imaging in the assessment of ischemic
stroke. Ann. Neurol., 1997:41, 547-548.
[11]
Hergan K., Schaefer P.W., Sorensen A.G. et al.: Diffusion-weighted MRI
in diffuse axonal injury of the brain. Eur. Radiol., 2002:12, 2536-2541.
[12]
Rovaris M., Filippi M.: Diffusion tensor MRI in multiple sclerosis. J. Neuroimaging,
2007:17, 27-30.
[13]
Guan X., Lai S., Lackey J. et al.: Revisiting anaplastic astrocytomas II:
further characterization of an expansive growth pattern with visually
enhanced diffusion tensor imaging. J. Magn. Reson. Imaging., 2008:28,
1322-1336.
[14]
Catani M., Howard R.J., Pajevic S. et al.: Virtual in vivo interactive
dissection of white matter fasciculi in the human brain. Neuroimage,
2002:17, 77-94.
[15]
Wakana S., Jiang H., Nagae-Poetscher L.M.: Fiber tract-based atlas of
human white matter anatomy. Radiology, 2004:230, 77-87.
[16]
Schneider J.F., Il’yasov K.A., Hennig J. et al.: Fast quantitative diffusiontensor
imaging of cerebral white matter from the neonatal period to adolescence.
Neuroradiology, 2004:46, 258-266.
[17]
Hermoye L., Saint-Martin C., Cosnard G. et al.: Pediatric diffusion tensor
imaging: normal database and observation of the white matter maturation
in early childhood. Neuroimage, 2006:29, 493-504.
[18]
Thomas B., Eyssen M., Peeters R. et al.: Quantitative diffusion tensor
imaging in cerebral palsy due to periventricular white matter injury.
Brain, 2005:128, 2562-2577.
[19]
Huang H., Zhang J., Wakana S. et al.: White and gray matter development
in human fetal, newborn and pediatric brains. Neuroimage, 2006:
15, 33, 27-38.
[20]
Mori S., Crain B.J., Chacko V.P. et al.: Three dimensional tracking of
axonal projections in the brain by magnetic resonance imaging. Ann.
Neurol., 1999:45, 265-269.
[21]
Kiechl-Kohlendorfer U., Ralser E., Pupp Peglow U. et al.: Adverse neurodevelopmental
outcome in preterm infants: risk factor profiles for different
gestational ages. Acta Paediatr., 2009:98, 792-796.
[22]
Hnatyszyn G.: Przydatność tomografii rezonansu magnetycznego głowy
w diagnostyce zmian niedotlenieniowoniedokrwiennych u noworodków
Neur. Dziec., 2007:16, 7-12.
[23]
Hoon Jr A.H., Stashinko E.E., Nagae L.M. et al.: Sensory and motor deficits
in children with cerebral palsy born preterm correlate with diffusion
tensor imaging abnormalities in thalamocortical pathways. Dev. Med.
Child Neurol., 2009 [Epub ahead of print]
[24]
Dyet L.E., Kennea N., Counsell S.J. et al.: Natural history of brain lesions
in extremely preterm infants studied with serial magnetic resonance
imaging from birth and neurodevelopmental assessment. Pediatrics,
2006:118, 536-548.
[25]
Bodensteiner J.B., Johnsen SD.: Magnetic resonance imaging (MRI)
findings in children surviving extremely premature delivery and extremely
low birthweight with cerebral palsy. J. Child Neurol., 2006:21,
743-747.
[26]
Boardman J.P., Counsell S.J., Rueckert D. et al.: Abnormal deep grey
matter development following preterm birth detected using deformationbased
morphometry. Neuroimage, 2006:32, 70-78.
[27]
Deipolyi A.R., Mukherjee P., Gill K. et al.: Comparing microstructural and
macrostructural development of the cerebral cortex in premature newborns:
Diffusion tensor imaging versus cortical gyration. Neuroimage,
2005:2, 579-586.
[28]
Constable R.T., Ment L.R., Vohr B.R. et al.: Prematurely born children
demonstrate white matter microstructural differences at 12 years of
age, relative to term control subjects: an investigation of group and
gender effects. Pediatrics, 2008:121, 306-316.
[29]
Ment L.R., Kesler S., Vohr B. et al.: Longitudinal brain volume changes
in preterm and term control subjects during late childhood and adolescence.
Pediatrics, 2009:123, 503-511.
[30]
Mahone E.M., Martin R., Kates W.R. et al.: Neuroimaging correlates of
parent ratings of working memory in typically developing children. J. Int.
Neuropsychol. Soc., 2009:15, 31-41.
[31]
Merkley T.L., Bigler E.D., Wilde E.A. et al.: Diffuse changes in cortical
thickness in pediatric moderate-to-severe traumatic brain injury. Neurotrauma,
2008:25, 1343-1345.
[32]
Yang P., Wang P.N., Chuang K.H. et al : Absence of gender effect on children
with attention-deficit/hyperactivity disorder as assessed by optimized
voxel-based morphometry. Psychiatry Res., 2008:164, 245-253.
[33]
McAlonan G.M., Cheung V., Cheung C. et al.: Mapping brain structure
in attention deficit-hyperactivity disorder: a voxel-based MRI study of
regional grey and white matter volume. Psychiatry Res., 2007:154,
171-180.
[34]
Overmeyer S., Bullmore E.T., Suckling J. et al.: Distributed grey and
white matter deficits in hyperkinetic disorder: MRI evidence for anatomical
abnormality in an attentional network. Psychol. Med., 2001:31,
1425-1435.
[35]
Gilbert A.R., Keshavan M.S., Diwadkar V. et al.: Gray matter differences
between pediatric obsessive-compulsive disorder patients and high-risk
siblings: a preliminary voxel-based morphometry study. Neurosci. Lett.,
2008:435, 45-50.
[36]
Carter J.C., Capone G.T., Kaufmann W.E.: Neuroanatomic correlates of
autism and stereotypy in children with Down syndrome. Neuroreport,
2008:19, 653-656.
[37]
Zeegers M., Pol H.H., Durston S. et al.: No differences in MR-based volumetry
between 2- and 7-year-old children with autism spectrum disorder
and developmental delay. Brain Dev., 2008 [Epub ahead of print]
Adres do korespondencji:
Wojciech Kułak, Klinika Rehabilitacji Dziecięcej Uniwersytetu Medycznego w Białymstoku
ul. Waszyngtona 17, 15-274 Białystok, kneur2@wp.pl
[38]
Jou R.J, Minshew N.J, Melhem N.M. et al.: Brainstem volumetric alterations
in children with autism. Psychol. Med., 2008:24, 1-8.