Vol. 30-31/2021-2022 Nr 60
okładka czasopisma Child Neurology
powiększenie okładki
Journal Info

CHILD NEUROLOGY

Journal of the Polish Society of Child Neurologists

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Semiannual


Powrót

Immunology of febrile seizures


Immunologia drgawek gorączkowych




Department of Neurology, Polish Mother’s Memorial Hospital, Research Institute in Lodz, Poland
Department of Paediatrics and Immunology, Polish Mother’s Memorial Hospital,
Research Institute in Lodz, Poland

Neurol Dziec 2011; 20, 40: 41-46
Full text PDF Immunology of febrile seizures



ABSTRACT
Febrile seizures are the most common childhood neurological pathologies. They occur in 2–3% of children between 6 months and 5 years of age. A number of genetic mutations and also environmental factors contribute to their manifestation. The role of the immune system in the pathophysiology of febrile seizures has been raised since the end of 1980s. In children with febrile seizures the decreased production of immunoglobulins, particularly G2, was observed in brain with the normal serum level. In 1990 elevation of interleukin 1 beta in cerebrospinal fluid was found in the group with seizures as compared to the control group with the same infection but without febrile seizures. The association and significance of immunological disorders (increase of IL-1â, IL-6, IL-8, IL-1RA and decrease of CD4/ CD8 level) in the manifestation of febrile seizures and especially prolonged febrile seizures was observed in the literature particularly during the last decade. Present studies suggest the correlation between immunological disorders and familial or sporadic incidence of febrile seizures. The studies on genetic polymorphism of interleukin 1â, 1á and IL-1 antagonist point to some associations between past febrile seizures and manifestation of temporal lobe epilepsy.

Key words: children, febrile seizures, cytokines, immunoglobulins, epilepsy


STRESZCZENIE
Drgawki gorączkowe stanowią najczęstszą patologię w neurologii dziecięcej. Występują u 2–3% dzieci w wieku pomiędzy 6 miesiącem a 5 rokiem życia. Ich ujawnienie się warunkuje szereg mutacji genetycznych i czynników środowiskowych. Od początku lat osiemdziesiątych ubiegłego wieku w patofizjologii drgawek gorączkowych podnosi się znaczenie układu odpornościowego. U dzieci z drgawkami gorączkowymi obserwuje się zmniejszoną produkcję immunoglobulin, zwłaszcza G2. W 1990 roku stwierdzono podwyższenie poziomu interleukiny1β w płynie mózgowo-rdzeniowym w grupie z drgawkami w porównaniu do grupy kontrolnej dzieci z tą samą infekcją, u których drgawki nie wystąpiły. Zainteresowanie problemami związku i znaczenia układu immunologicznego w ujawnieniu drgawek gorączkowych, a zwłaszcza drgawek gorączkowych długotrwałych obserwuje się w piśmiennictwie przedmiotu, zwłaszcza w ostatniej dekadzie (zwiększenie poziomu IL-1β, IL-6, IL-8 i obniżenie CD4/CD8). Współczesne badania wskazują na istniejące korelacje między zaburzeniami immunologicznymi a rodzinnym lub sporadycznym występowaniem drgawek gorączkowych. Badania nad genetycznym polimorfizmem interleukiny 1β, interleukiny 1α antagonisty receptora IL-1 zwracają uwagę na związki między przebyciem drgawek gorączkowych a ujawnieniem się padaczki płata skroniowego.

Słowa kluczowe: dzieci, drgawki gorączkowe, cytokiny, immunoglobuliny, padaczka


BIBLIOGRAPHY
[1] 
Wendorff J.: Kompleksowa ocena rokowania u dzieci z drgawkami gorączkowymi na podstawie badań prospektywnych. Neurol Dziec1997; supl.: 1–206.
[1] 
Wendorff J.: Kompleksowa ocena rokowania u dzieci z drgawkami gorączkowymi na podstawie badań prospektywnych. Neurol Dziec1997; supl.: 1–206.
[2] 
Helminen M., Vesicari T.: Increased interleukin-1 (IL-1) production from LPS-stimulated peripheral blood monocytes in children with febrile seizures. Acta Paediatr Scand 1990; 79: 810–816.
[2] 
Helminen M., Vesicari T.: Increased interleukin-1 (IL-1) production from LPS-stimulated peripheral blood monocytes in children with febrile seizures. Acta Paediatr Scand 1990; 79: 810–816.
[3] 
Ichiyama T., Nishikawa M., Yoshitomi T., et al: Tumor necrosis factor alfa, interleukin-1 beta and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparision with acute encephalitis/ encephalepaty. Neurology 1998; 50: 407–411.
[3] 
Ichiyama T., Nishikawa M., Yoshitomi T., et al: Tumor necrosis factor alfa, interleukin-1 beta and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparision with acute encephalitis/ encephalepaty. Neurology 1998; 50: 407–411.
[4] 
Löschler W., Siemens H.: Increased concentration of prostaglandin E-2 i CSF in children with febrile convulsions. Epilepsia 1988; 3: 307–310.
[4] 
Löschler W., Siemens H.: Increased concentration of prostaglandin E-2 i CSF in children with febrile convulsions. Epilepsia 1988; 3: 307–310.
[5] 
Cartmell T., Luneshi G.N., Rothwell N.J.: Brains sites of action of endogenous intraleukin-1 in the febrile response to localized inflammation in the rat. J Physial 1999; 518: 585–894.
[5] 
Cartmell T., Luneshi G.N., Rothwell N.J.: Brains sites of action of endogenous intraleukin-1 in the febrile response to localized inflammation in the rat. J Physial 1999; 518: 585–894.
[6] 
Saper C.,B.: Neurobiological basis of fever. Am. J Physial 1998; 856: 90–94.
[6] 
Saper C.,B.: Neurobiological basis of fever. Am. J Physial 1998; 856: 90–94.
[7] 
Heida J.G., Teskey G.C., Pittman Q.J.: Febrile convulsions induced by combination of lipopdysaccharde an low-dose clinic acid enhance seizure susceptibility, not epileptogenesis in rats. Epilesia 2005;46: 1898–1905.
[7] 
Heida J.G., Teskey G.C., Pittman Q.J.: Febrile convulsions induced by combination of lipopdysaccharde an low-dose clinic acid enhance seizure susceptibility, not epileptogenesis in rats. Epilesia 2005;46: 1898–1905.
[8] 
Dam A.M., Poole S., Schulzberg M., et al.: Effects of peripherical administration of LPS on the expression of immunorecictive interleukin-1 alfa, beta and receptor agonist in rat brain. Ann NY Acad Sci 1998; 840: 128–138.
[8] 
Dam A.M., Poole S., Schulzberg M., et al.: Effects of peripherical administration of LPS on the expression of immunorecictive interleukin-1 alfa, beta and receptor agonist in rat brain. Ann NY Acad Sci 1998; 840: 128–138.
[9] 
Vivani B., Baetesaghi S., Gardoni F.et al.: Interleukin-1 beta enhances NHDA receptor-mediated intracellular calcium increase the nigh activation Src activation kinas’. J Neurosci 2003; 23: 8692–8700.
[9] 
Vivani B., Baetesaghi S., Gardoni F.et al.: Interleukin-1 beta enhances NHDA receptor-mediated intracellular calcium increase the nigh activation Src activation kinas’. J Neurosci 2003; 23: 8692–8700.
[10] 
Wang S., Cheng Q., Malik S.et al.: Interleukin-1 beta inhibits gamaaminobutyric acid type A (GABA (A)) receptor current in cultured hippocampus neurons. J Pharmacol Exp Ther 2000; 292: 497–504.
[10] 
Wang S., Cheng Q., Malik S.et al.: Interleukin-1 beta inhibits gamaaminobutyric acid type A (GABA (A)) receptor current in cultured hippocampus neurons. J Pharmacol Exp Ther 2000; 292: 497–504.
[11] 
Wilkinson M.F., Horn T.F. et al: Central interleukin-1 beta stimulation of vasopressin release intro the rat brain: activation of an antipyretic pathway. J Physial 1994; 481: 641–646.
[11] 
Wilkinson M.F., Horn T.F. et al: Central interleukin-1 beta stimulation of vasopressin release intro the rat brain: activation of an antipyretic pathway. J Physial 1994; 481: 641–646.
[12] 
Landgraf R., Neumann J., Holsboer F.et al.: Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 1995; 7: 592–598.
[12] 
Landgraf R., Neumann J., Holsboer F.et al.: Interleukin-1 beta stimulates both central and peripheral release of vasopressin and oxytocin in the rat. Eur J Neurosci 1995; 7: 592–598.
[13] 
Vezzani A., Moneta D., Richichi C.et al.: Functional role of proinflamatory and anti-inflammatory cytokines in seizures. Exp Med Bial 2004; 548: 122–133.
[13] 
Vezzani A., Moneta D., Richichi C.et al.: Functional role of proinflamatory and anti-inflammatory cytokines in seizures. Exp Med Bial 2004; 548: 122–133.
[14] 
Asano T., Ichiki K., Koizumi S., et al.: IL-8 in cerebra spinal fluid from children with in that from children with febrile seizure. Clinical immunology. Scand J Immunol 2010; 71: 447–451.
[14] 
Asano T., Ichiki K., Koizumi S., et al.: IL-8 in cerebra spinal fluid from children with in that from children with febrile seizure. Clinical immunology. Scand J Immunol 2010; 71: 447–451.
[15] 
Dinarello C.A.: Biologic basis for interleukin –1 in disease. Blood 1996; 87: 2095–2147.
[15] 
Dinarello C.A.: Biologic basis for interleukin –1 in disease. Blood 1996; 87: 2095–2147.
[16] 
Virta M., Hurme M., Helminen M.: Increased plasma levels of pro and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia 2002; 43: 920–923.
[16] 
Virta M., Hurme M., Helminen M.: Increased plasma levels of pro and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia 2002; 43: 920–923.
[17] 
Fukuda M., Morimoto T., Suzuki Y., et al.: Interleukin-6 attenuates hyperthermia-induced seizures in developing nets. Brain Dev 2007; 26: 644–648.
[17] 
Fukuda M., Morimoto T., Suzuki Y., et al.: Interleukin-6 attenuates hyperthermia-induced seizures in developing nets. Brain Dev 2007; 26: 644–648.
[18] 
Biber K., Lubrick B., Fiebich B.L., et al.: Interleukin-6 enhances expression of adenosine A1 receptor mRNA and signaling in cultured rats cortical atrocities and brain slices. Neuropsychopharmacology 2001; 24: 86–96.
[18] 
Biber K., Lubrick B., Fiebich B.L., et al.: Interleukin-6 enhances expression of adenosine A1 receptor mRNA and signaling in cultured rats cortical atrocities and brain slices. Neuropsychopharmacology 2001; 24: 86–96.
[19] 
Peltola J., Palmio J., Korhonen L., et al.: Interleukin-6 and interleukin-1 receptor antagonist in CSF from patients with recent tonic-clonic seizures. Epilepsy Res 2000; 41: 205–211.
[19] 
Peltola J., Palmio J., Korhonen L., et al.: Interleukin-6 and interleukin-1 receptor antagonist in CSF from patients with recent tonic-clonic seizures. Epilepsy Res 2000; 41: 205–211.
[20] 
Tsai R.J., Chau J.C., Hsieh Y.Y., et al.: Interleukin 4 Intone 3 polymorphism is not related to susceptibility to febrile seizures. Pediatric Neurol 2002; 27: 271–274.
[20] 
Tsai R.J., Chau J.C., Hsieh Y.Y., et al.: Interleukin 4 Intone 3 polymorphism is not related to susceptibility to febrile seizures. Pediatric Neurol 2002; 27: 271–274.
[21] 
Kanemoto K., Kawasaki J., Miyamoto T., et al.: IL-1 beta, IL-1 alfa and IL-1 receptor antagonist gene polymprphismsin patients with temporal lobe epilepsy. Ann Neurol 2000; 47: 571–574.
[21] 
Kanemoto K., Kawasaki J., Miyamoto T., et al.: IL-1 beta, IL-1 alfa and IL-1 receptor antagonist gene polymprphismsin patients with temporal lobe epilepsy. Ann Neurol 2000; 47: 571–574.
[22] 
Harvey A.S., Grattan-Amith J.D., Desmont P.M., et al.: Febrile seizures and hippocampus sclerosis: frequent and related firings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol 1995; 12: 201–206.
[22] 
Harvey A.S., Grattan-Amith J.D., Desmont P.M., et al.: Febrile seizures and hippocampus sclerosis: frequent and related firings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol 1995; 12: 201–206.
[23] 
Mehler J., Mc Lachlan R.S.: Febrile convulsions. Is the seizure duration the most important predictor of TLE? Brain 1995; 118: 1521–1528.
[23] 
Mehler J., Mc Lachlan R.S.: Febrile convulsions. Is the seizure duration the most important predictor of TLE? Brain 1995; 118: 1521–1528.
[24] 
Vitra M., Hurme M., Helminen M.: Increased frequency of interleukin 1 beta(-512) Allele 2 in febrile seizures. Pediatr Neurol 2002; 26: 192–195.
[24] 
Vitra M., Hurme M., Helminen M.: Increased frequency of interleukin 1 beta(-512) Allele 2 in febrile seizures. Pediatr Neurol 2002; 26: 192–195.
[25] 
Kira R., Torisau H., Takemoto M et al.: Genetic susceptibility to Simple febrile seizures: Interleukin-1 promoter polymorphisms are associated with sporadic cases. Neurosci Lett 2005; 384: 239–244.
[25] 
Kira R., Torisau H., Takemoto M et al.: Genetic susceptibility to Simple febrile seizures: Interleukin-1 promoter polymorphisms are associated with sporadic cases. Neurosci Lett 2005; 384: 239–244.
[26] 
Chou J.C., Tsai C.H., Hieh C.T., et al.: Association between polymorphism of interleukin 1-beta-511 promoter and susceptibility to febrile convulsions in Taiwanese children. Acta Paediatr 2003; 9: 1356–1361.
[26] 
Chou J.C., Tsai C.H., Hieh C.T., et al.: Association between polymorphism of interleukin 1-beta-511 promoter and susceptibility to febrile convulsions in Taiwanese children. Acta Paediatr 2003; 9: 1356–1361.
[27] 
Tilgen H., Pfeifer J., Coblianschi B, et al.: Association analysis between human interleukin 1 beta (–511) gene polymorphism and susceptibility to febrile convulsions. Neurosci Lett 2002; 334: 68–70.
[27] 
Tilgen H., Pfeifer J., Coblianschi B, et al.: Association analysis between human interleukin 1 beta (–511) gene polymorphism and susceptibility to febrile convulsions. Neurosci Lett 2002; 334: 68–70.
[28] 
Forsgren L., Sidervall R., Bloomqvist H.K.: Pre and prenatal factors in febrile convulsions. Acta Pediatric Scand 1991; 80: 218–225.
[28] 
Forsgren L., Sidervall R., Bloomqvist H.K.: Pre and prenatal factors in febrile convulsions. Acta Pediatric Scand 1991; 80: 218–225.
[29] 
Asano T., Ichiki K., Koizumi S., et al.: IL-8 in cerebral fluid from children with acute encephalopathy is higher than in that from children with febrile seizures. Scand J Immunol 2010; 71: 447–451.
[29] 
Asano T., Ichiki K., Koizumi S., et al.: IL-8 in cerebral fluid from children with acute encephalopathy is higher than in that from children with febrile seizures. Scand J Immunol 2010; 71: 447–451.
[30] 
Takanashi J., Oba H., Barkovich A.J., et al.: Diffusion MRI abnormalities after prolonged febrile seizures with encephalopathy. Neurology 2006; 66: 1304–1309.
[30] 
Takanashi J., Oba H., Barkovich A.J., et al.: Diffusion MRI abnormalities after prolonged febrile seizures with encephalopathy. Neurology 2006; 66: 1304–1309.
[31] 
Yamashita T., Sawamoto K., Suzuki S., et al.: Blockade of interleukin-6 signaling aggravates ischemic cerebral demarche in mice: possible involvement of Stat-3 activation in the protection of neurons’. J Neurochem 2005; 94: 459–468.
[31] 
Yamashita T., Sawamoto K., Suzuki S., et al.: Blockade of interleukin-6 signaling aggravates ischemic cerebral demarche in mice: possible involvement of Stat-3 activation in the protection of neurons’. J Neurochem 2005; 94: 459–468.
[32] 
Eeg-Oloffson O., Wigertz A., Link H.: Immunoglobulins abnormalities in cerebrospinal fluid and blood in children with febrile seizures. Neuropediatrics 1982; 13: 39–41.
[32] 
Eeg-Oloffson O., Wigertz A., Link H.: Immunoglobulins abnormalities in cerebrospinal fluid and blood in children with febrile seizures. Neuropediatrics 1982; 13: 39–41.
[33] 
Eeg-Olofsson O., Miller NJ., Salam EL.: Immunoglobulins and IgG subclasses in children with febrile seizures. Neuropediatrics 1989; 20: 201–215.
[33] 
Eeg-Olofsson O., Miller NJ., Salam EL.: Immunoglobulins and IgG subclasses in children with febrile seizures. Neuropediatrics 1989; 20: 201–215.
[34] 
Montelli TCB., Soares AMVC., Parise-Fortes MR.: Alterations of cellmediated immune response in children with febrile seizures. Arq Neuro- Psiquiat 1997; 55: 193–198.
[34] 
Montelli TCB., Soares AMVC., Parise-Fortes MR.: Alterations of cellmediated immune response in children with febrile seizures. Arq Neuro- Psiquiat 1997; 55: 193–198.
[35] 
Zubiel M.: Ocena stanu swoistej odpowiedzi humoralnej u dzieci z drgawkami gorączkowymi i padaczką o różnym przebiegu. Rozprawa na stopień doktora nauk medycznych. ICZMP. Łódź 2000.
[35] 
Zubiel M.: Ocena stanu swoistej odpowiedzi humoralnej u dzieci z drgawkami gorączkowymi i padaczką o różnym przebiegu. Rozprawa na stopień doktora nauk medycznych. ICZMP. Łódź 2000.
[36] 
Aarli JA.: Immunological aspects of epilepsy. Brain Dev 1993; 15: 412– 450
[36] 
Aarli JA.: Immunological aspects of epilepsy. Brain Dev 1993; 15: 412– 450
[37] 
Eeg-Olofsson O., Osterland CK., Guttman RD., et al.: Immunological studies in focal epilepsy. Acta Neurol Scand 1988; 78: 358–368.
[37] 
Eeg-Olofsson O., Osterland CK., Guttman RD., et al.: Immunological studies in focal epilepsy. Acta Neurol Scand 1988; 78: 358–368.
[38] 
Eeg-Olofsson O., Prackl JF., Andermann F.: Abnormalities of T-lymphocyte subsets in epileptic patients. Acta Neurol Scand 1985; 72: 140–144.
[38] 
Eeg-Olofsson O., Prackl JF., Andermann F.: Abnormalities of T-lymphocyte subsets in epileptic patients. Acta Neurol Scand 1985; 72: 140–144.
[39] 
Lenti C., Maserini C., Barlocco A., et al.: IgG2 deficiency In children with febrile convulsions: a familial study. Ital J Neurol Sci 1993; 14: 561–564.
[39] 
Lenti C., Maserini C., Barlocco A., et al.: IgG2 deficiency In children with febrile convulsions: a familial study. Ital J Neurol Sci 1993; 14: 561–564.
[40] 
Isaacs A.D., Webster B., Valman H.B.: Serum immunoglobulin concetration in febrile seizures. Arch Dis Child 1984; 59: 367–369.
[40] 
Isaacs A.D., Webster B., Valman H.B.: Serum immunoglobulin concetration in febrile seizures. Arch Dis Child 1984; 59: 367–369.
[41] 
Bertolani M.F., Portolani M., Marrotti F et al.: A study of childhood febrile convulsions with particular reference to HHV-6 infection: pathogenic considerations. Child Nerv Syst 1996; 12: 534–539.
[41] 
Bertolani M.F., Portolani M., Marrotti F et al.: A study of childhood febrile convulsions with particular reference to HHV-6 infection: pathogenic considerations. Child Nerv Syst 1996; 12: 534–539.
[42] 
Barone S.R., Koplan M.H., Krilov L.R.: Human herpesvirus-6 infection in children with first febrile seizures. J Pediatr 1995; 127: 95–97.
[42] 
Barone S.R., Koplan M.H., Krilov L.R.: Human herpesvirus-6 infection in children with first febrile seizures. J Pediatr 1995; 127: 95–97.
Powrót
 

Most downloaded
Semiologiczna i psychiatryczna charakterystyka dzieci z psychogennymi napadami rzekomopadaczkowymi
Neurol Dziec 2018; 27, 55: 11-14
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17

Article tools
Export Citation
Format:

Scholar Google
Articles by:Wendorff J
Articles by:Zeman K

PubMed
Articles by:Wendorff J
Articles by:Zeman K


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych